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ABSTRACT

Emerging smart contract systems over decentralized cryp-
tocurrencies allow mutually distrustful parties to transact
safely with each other without trusting a third-party inter-
mediary. In the event of contractual breaches or aborts, the
decentralized blockchain ensures that other honest parties
obtain commesurate remuneration. Existing systems, how-
ever, lack transactional privacy. All transactions, including
flow of money between pseudonyms and amount trasacted,
are exposed in the clear on the blockchain.

We present Hawk, a decentralized smart contract system
that does not store financial transactions in the clear on
the blockchain, thus retaining transactional privacy from the
public’s view. A Hawk programmer can write a private smart
contract in an intuitive manner without having to implement
cryptography, and our compiler automatically generates an
efficient cryptographic protocol where contractual parties in-
teract with the blockchain, using cryptographic primitives
such as succint zero-knowledge proofs.

To formally define and reason about the security of our
protocols, we are the first to formalize the blockchain model
of secure computation. The formal modeling is of indepen-
dent interest. We advocate the community to adopt such a
formal model when designing interesting applications atop
decentralized blockchains.

1. INTRODUCTION

Decentralized cryptocurrencies such as Bitcoin [45] and
altcoins [18| have rapidly gained popularity, and are often
quoted as a glimpse into our future [5|. These emerging cryp-
tocurrency systems build atop a novel blockchain technology
where miners run distributed consensus whose security is en-
sured if no adversary wields a large fraction of the computa-
tional (or other forms of) resource. The terms “blockchain”
and “miners” are therefore often used interchangeably.

Blockchains like Bitcoin reach consensus not only about a
stream of data (e.g., payment transactions), but also about
computations involving this data (e.g., applying transac-
tional semantics and updating the ledger). When we gen-
eralize the blockchain’s computation to arbitrary Turing-
complete logic, we obtain an expressive smart contract sys-
tem such as the soon-to-be-launched Ethereum [52]|. Smart
contracts are programs executed by all miners. Assuming
that the decentralized concensus protocol is secure, smart
contracts can be thought of as a conceptual party (in reality
decentralized) that can be trusted for correctness but not for
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privacy. Specifically, a blockchain’s data and computation
are publicly visible. Further, since the blockchain advances
in well-defined block intervals defined by the “mining” pro-
cess, a discrete notion of time exists.

These features combined make the blockchain a new com-
putation model empowered to enforce notions of financial
fairness even in the presence of aborts. As is well-known
in the crytography literature, fairness against aborts is in
general impossible in standard models of interactive proto-
col execution (e.g., secure multi-party computation), when
the majority of parties can be corrupted [8(16}23|. In the
blockchain model, protocol aborts can be made evident by
timeouts. Therefore, the blockchain can enforce financial re-
muneration to the honest counterparties in the presence of
protocol breach or aborts. In summary, decentralized smart
contracts allow parties mutually unbeknownst to transact
securely with each other, without trusting any central inter-
mediary or incurring high legal and transactional cost.

Despite the expressiveness and power of blockchain and
smart contracts, the present form of these technologies lacks
transactional privacy. The entire sequence of actions taken
in a smart contract are propagated across the network and /or
recorded on the blockchain, and therefore are publicly visi-
ble. Even though parties can create new pseudonymous pub-
lic keys to increase their anonymity, the values of all trans-
actions and balances for each (pseudonymous) public key
are publicly visible. Further, recent works have also demon-
strated deanonymization attacks by analyzing the transac-
tional graph structures of cryptocurrencies [40,/48|. The pri-
vacy requirements of many financial transactions will likely
preclude the use of existing smart contract systems. Al-
though there has been progress in designing privacy-preserving
cryptocurrencies such as Zerocash [10] and several others |24
411/50], these systems forgo programmability, and it is un-
clear a priori how to enable programmability without ex-
posing transactions and data in cleartext to miners.

1.1 Hawk Overview

We propose Hawk, a framework for building privacy-preserving

smart contracts. With Hawk, a non-specialist programmer
can easily write a Hawk program without having to imple-
ment any cryptography. Our Hawk compiler automatically
compiles the program to a cryptographic protocol between
the blockchain and the users. As shown in Figure[l} a Hawk
program contains two parts:

e A private contract program denoted ¢priv Which takes in
parties’ input data (e.g., choice in a “rock, paper, scissors”
game) as well as currency units (e.g., bids in an auction).
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Figure 1: Hawk overview.

The program ¢priv performs computation to determine
the payout distribution amongst the parties. For exam-
ple, in an auction, winner’s bid goes to the seller, and
others’ bids are refunded. The private contract ¢priv is
meant to protect the participants’ data and the exchange
of money.

e A public contract program denoted ¢pup that does not
touch private data or money.

Our Hawk compiler will compile the public contract to
execute directly on the public blockchain, and compile the
private contract ¢priv into a cryptographic protocol involv-
ing the following pieces: 1) protocol logic to be executed
by the blockchain; and ii) protocol logic to be executed by
contractual parties.

Security guarantees. Hawk’s security guarantees encom-
pass two aspects:

e On-chain privacy. On-chain privacy stipulates that trans-
actional privacy be provided against the public (i.e., against
any party not involved in the contract) — unless the con-
tractual parties themselves voluntarily disclose informa-
tion. Although in Hawk protocols, users exchange data
with the blockchain, and rely on it to ensure fairness
against aborts, the flow of money and amount transacted
in the private contract ¢piv is cryptographically hidden
from the public’s view.

e Contractual security. While on-chain privacy protects
contractual parties’ privacy against the public (i.e., par-
ties not involved in the contract), contractual security
protects parties in the same contractual agreement from
each other. Hawk assumes that contractual parties act
selfishly to maximize their own financial interest. In par-
ticular, they can arbitrarily deviate from the prescribed
protocol or even abort prematurely. Therefore, contrac-
tual security is a multi-faceted notion that encompasses
not only cryptographic notions of confidentiality and au-
thenticity, but also financial fairness in the presence of
cheating and aborting behavior. The best way to under-
stand contractual security is through a concrete example,
and we refer the reader to Section for a more detailed
explanation.

Minimally trusted manager. Hawk-generated protocols
assume a special contractual party called a manager (e.g.,
an auction manager) besides the normal users. The man-
ager aids the efficient execution of our cryptographic pro-
tocols while being minimally trusted. A skeptical reader
may worry that our use of such a party trivializes our secu-
rity guarantees; we dispel this notion by directly explaining
what a corrupt manager can and cannot do: Although a
manager can see the transactions that take place in a pri-
vate contract, it cannot affect the outcome of the contract,
even when it colludes with other users. In the event that a

manager aborts the protocol, it can be financially penalized,
and users obtain remuneration accordingly. The manager
also need not be trusted to maintain the security or privacy
of the underlying currency (e.g., it cannot double-spend, in-
flate the currency, or deanonymize users). Furthermore, if
multiple contract instances run concurrently, each contract
may specify a different manager and the effects of a corrupt
manager are confined to that instance. Finally, the manager
role may be instantiated with trusted computing hardware
like Intel SGX, or replaced with a multiparty computation
among the users themselves, as we describe in Section

1.2 Example: Sealed Auction

Example program. Figure [2| shows a Hawk program for
implementing a sealed, second-price auction where the high-
est bidder wins, but pays the second highest price. Second-
price auctions are known to incentivize truthful bidding un-
der certain assumptions, [51] and it is important that bidders
submit bids without knowing the bid of the other people.
Our example auction program contains a private contract
¢priv that determines the winning bidder and the price to
be paid; and a public contract ¢pu, that relies on public
deposits to protect bidders from an aborting manager.

Contractual security requirements. Hawk will compile
this auction program to a cryptographic protocol. As men-
tioned earlier, as long as the bidders and the manager do
not voluntarily disclose information, transaction privacy is
maintained against the public. Hawk also guarantees the fol-
lowing contractual security requirements for parties in the
contract:

e Input independent privacy. Each user does not see others’
bids before committing to their own. This way, users bids
are independent of others’ bids. Hawk guarantees input
independent privacy even against a malicious manager.

e Posterior privacy. As long as the manager does not dis-
close information, users’ bids are kept private from each
other (and from the public) even after the auction.

e [inancial fairness. If a party aborts or if the auction man-
ager aborts, the aborting party should be financially pe-
nalized while the remaining parties receive compensation.
Such fairness guarantees are not attainable in general by
off-chain only protocols such as secure multi-party com-
putation [7,|16]. As explained later, Hawk offers built-in
mechanisms for enforcing refunds of private bids after cer-
tain timeouts. Hawk also allows the programmer to define
additional rules, as part of the Hawk contract, that govern
financial fairness.

e Security against a dishonest manager. We ensure authen-
ticity against a dishonest manager: besides aborting, a
dishonest manager cannot affect the outcome of the auc-
tion and the redistribution of money, even when it colludes
with a subset of the users. We stress that to ensure the
above, input independent privacy against a faulty man-
ager is a prerequisite. Moreover, if the manager aborts, it
can be financially penalized, and the participants obtain
corresponding remuneration.

An auction with the above security and privacy require-
ments cannot be trivially implemented atop existing cryp-
tocurrency systems such as Ethereum [52] or Zerocash [10].
The former allows for programmability but does not guaran-



(Seller,/* N parties */);

2 (/* hardcoded timeouts */);
3 // Private contract ¢priv
4 private contract (Inp &in, Outp &out) {
5 int winner = -1;
6 int bestprice = -1;
7 int secondprice = -1;
8 for (int i = 0; i < N; i++) {
9 if (in.party[i].$val > bestprice) {
10 secondprice = bestprice;
11 bestprice = in.partyl[il.$val;
12 winner = ij;
13 } else if (in.party[i].$val > secondprice) {
14 secondprice = in.party[i].$val;
15 }
16 }
17 // Winner pays secondprice to seller
18 // Everyone else is refunded
19 out.Seller.$val = secondprice;
20 out.party[winner] .$val = bestprice - secondprice;
21 out.winner = winner;
22 for (int i = 0; i < N; i++) {
23 if (i != winner)
24 out.party[il.$val = in.party[il.S$val;
25 }
26}
27 // Public contract ¢pup
28 public contract
29 // Manager deposits $N
30 def O:
31 send $N to Manager
32 def O:
33 for (i in range(8$N)):
34 send $1 to partyl[il
35 }
Figure 2: Hawk contract for a second-price sealed

auction. Code described in this paper is an approximation
of our real implementation. In the public contract, the syn-
tax “send $N to P” corresponds to the following semantics
in our cryptographic formalism: ledger[P] := ledger[P] + $N
— see Section

tee transactional privacy, while the latter guarantees trans-
actional privacy but at the price of even reduced programma-
bility than Bitcoin.

Aborting and timeouts. Aborting are dealt with using
timeouts. A Hawk program such as Figure [2] declares time-
out parameters using the special syn-
tax. Three timeouts are declared where 71 < 15 < Tj:

T1 : The Hawk contract stops collecting bids after T3 .

T, : All users should have opened their bids to the manager
within 7T%; if a user submitted a bid but fails to open by
T>, its input bid is treated as 0 (and any other potential
input data treated as L), such that the manager can
continue.

T5 : If the manager aborts, users can reclaim their private
bids after time T3.

The public Hawk contract ¢pup, can additionally imple-
ment incentive structures. Our sealed auction program re-
distributes the manager’s public deposit if it aborts. More
specifically, in our sealed auction program, ¢pun defines two
functions, namely and . The

function will be invoked when the Hawk contract completes
execution within 73, i.e., manager did not abort. Otherwise,
if the Hawk contract does not complete execution within T3,
the function will be invoked. We remark
that although not explicitly written in the code, all Hawk
contracts have an implicit default entry point for accepting
parties’ deposits — these deposits are withheld by the con-
tract till they are redistributed by the contract. Bidders
should check that the manager has made a public deposit
before submitting their bids.

Additional applications. Besides the sealed auction ex-
ample, Hawk supports various other applications. We give
more sample programs in Section [5.2)

1.3 Contributions

To the best of our knowledge, Hawk is the first to simulta-
neously offer transactional privacy and programmability in
a decentralized cryptocurrency system.

The blockchain UC formalization could be presented on its
own, but we gain evidence of its usefulness by implementing
it and applying it to interesting practical examples. Like-
wise our system implementation benefits from the formalism
because we can use our framework to provide provable se-
curity.

Formal models for decentralized smart contracts. We
are among the first ones to initiate a formal, academic treat-
ment of the blockchain model of cryptography. We present
a formal, UC-compatible model for the blockchain model of
cryptography — this formal model is of independent inter-
est, and can be useful in general for defining and modeling
the security of protocols in the blockchain model. Our for-
mal model has also been adopted by the Gyges work [35] in
designing criminal smart contracts.

In defining for formal blockchain model, we rely on a no-
tion called wrappers to modularize our protocol design and
to simplify presentation. Wrappers handle a set of common
details such as timers, pseudonyms, global ledgers in a cen-
tralized place such that they need not be repeated in every
protocol.

New cryptography suite. We implement a new cryptog-
raphy suite that binds private transactions with programmable
logic. Our protocol suite contains three essential primitives
freeze, compute, and finalize. The freeze primitive al-
lows parties to commit to not only normal data, but also
coins. Committed coins are frozen in the contract, and
the payout distribution will later be determined by the pro-
gram ¢priv. During compute, parties open their committed
data and currency to the manager, such that the manager
can compute the function ¢priv. Based on the outcome of
¢priv, the manager now constructs new private coins to be
paid to each recipient. When the manager submits both
the new private coins as well as zero-knowledge proofs of
their well-formedness, the previously frozen coins are now
redistributed among the users. Our protocol suite strictly
generalizes Zerocash since Zerocash implements only private
money transfers between users without programmability.

We define the security of our primitives using ideal func-
tionalities, and formally prove security of our constructions
under a simulation-based paradigm.

Implementation and evaluation. We built a Hawk pro-
totype and evaluated its performance by implementing sev-



eral example applications, including a sealed-bid auction,
a “rock, paper, scissors” game, a crowdfunding application,
and a swap financial instrument. We demonstrate interest-
ing protocol optimizations that gained us a factor of 18 x in
performance relative to a straightforward implementation.
We show that for at about 100 parties (e.g., auction and
crowdfunding), the manager’s cryptographic computation
(the most expensive part of the protocol) is under 2.8min
using 4 cores, translating to under $0.13 of EC2 time.
Further, all on-chain computation (performed by all min-
ers) is very cheap, and under 17ms for all cases. We will
open source our Hawk framework in the near future.

1.4 Background and Related Work

1.4.1 Background

The original Bitcoin offers limited programmability through
a scripting language that is neither Turing-complete nor user
friendly. Numerous previous endeavors at creating smart
contract-like applications atop Bitcoin (e.g., lottery [7,|16],
micropayments [4],verifiable computation |38]) have demon-
strated the difficulty of in retrofitting Bitcoin’s scripting lan-
guage — this serves well to motivate a Turing-complete, user-
friendly smart contract language.

Ethereum is the first Turing-complete decentralized smart
contract system. With Ethereum’s imminent launch, com-
panies and hobbyists are already building numerous smart
contract applications either atop Ethereum or by forking
off Ethereum, such as prediction markets [3], supply chain
provenance [6], crowd-based fundraising [1], and security
and derivatives trading [27].

Security of the blockchain. Like earlier works that de-
sign smart contract applications for cryptocurrencies, we
rely on the underlying decentralized blockchain to be secure.
Therefore, we assume the blockchain’s consensus protocol
attains security when an adversary does not wield a large
fraction of the computational power. Existing cryptocur-
rencies are designed with heuristic security. On one hand,
researchers have identified attacks on various aspects of the
system [28,/33]; on the other, efforts to formally understand
the security of blockchain consensus have begun [32}/43].

Minimizing on-chain costs. Since every miner will exe-
cute the smart contract programs while verifying each trans-
action, cryptocurrencies including Bitcoin and Ethereum col-
lect transaction fees that roughly correlate with the cost of
execution. While we do not explicitly model such fees, we
design our protocols to minimize on-chain costs by perform-
ing most of the heavy-weight computation off-chain.

1.4.2 Additional Related Works

Leveraging blockchain for financial fairness. A few
prior works have explored how to leverage the blockchain
technology to achieve fairness in protocol design. For exam-
ple, Bentov et al. [16], Andrychowicz et al. [7], Kumaresan et
al. [38], Kiayias et al. [36], as well as Zyskind et al. [54], show
how Bitcoin can be used to ensure fairness in secure multi-
party computation protocols. These protocols also perform
off-chain secure computation of various types, but do not
guarantee transactional privacy (i.e., hiding the currency
flows and amounts transacted). For example, it is not clear
how to implement our sealed auction example using these
earlier techniques. Second, these earlier works either do not

offer system implementations or provide implementations
only for specific applications (e.g., lottery). In comparison,
Hawk provides a generic platform such that non-specialist
programmers can easily develop privacy-preserving smart
contracts.

Smart contracts. The conceptual idea of programmable

electronic “smart contracts” dates back nearly twenty years [49).

Besides recent decentralized cryptocurrencies, which guar-
antee authenticity but not privacy, other smart contract im-
plementations rely on trusted servers for security [44]. Our
work therefore comes closest to realizing the original vision
of parties interacting with a trustworthy “virtual computer”
that executes programs involving money and data.

Programming frameworks for cryptography. Several
works have developed programming frameworks that take
in high-level program as specifications and generate cryp-
tographic implementations. For example, previous works
have developed compilers for secure multi-party computa-
tion [17,37,|39L/47], authenticated data structures [42], and
(zero-knowledge) proofs [12,30,31,/46]. Zheng et al. show
how to generate secure distributed protocols such as sealed
auctions, battleship games, and banking applications [53].
These works support various notions of security, but none of
them interact directly with money or leverage public block-
chains for ensuring financial fairness. Thus our work is
among the first to combine the “correct-by-construction”
cryptography approach with smart contracts.

Concurrent work. Our framework is the first to provide
a full-fledged formal model for decentralized blockchains as
embodied by Bitcoin, Ethereum, and many other popular
decentralized cryptocurrencies. In concurrent and indepen-
dent work, Kiayias et al. [36] also propose a blockchain
model in the (Generalized) Universal Composability frame-
work [21] and use it to derive results that are similar to what
we describe in Appendix i.e., fair MPC with public de-
posits. However, the “programmability” of their formalism
is limited to their specific application (i.e., fair MPC with
public deposits). In comparison, our formalism is designed
with much broader goals, i.e., to facilitate protocol designers
to design a rich class of protocols in the blockchain model.
In particular, both our real-world wrapper (Figure and
ideal-world wrapper (Figure [3) model the presence of arbi-
trary user defined contract programs, which interact with
both parties and the ledger. Our formalism has also been
adopted by the Gyges work [35] demonstrating its broad
usefulness.

2. THE BLOCKCHAIN MODEL OF CRYP-
TOGRAPHY

We describe a formal model for smart contract execution
under which we give formal proofs of security for our pro-
tocols. Our model conforms to the Universal Composability
(UC) framework [19].

Protocols in the blockchain model. Our model makes
use of a special party (in reality decentralized) called the
contracll that is entrusted to enforce correctness but
not privacy. All messages sent to the contract and all

!Disambiguation: the contract C in our cryptography for-
malism always refers to the native contract executed on the
blockchain, not the user-facing Hawk program.



of its internal states are publicly visible. During the proto-
col, users interact with the contract by exchanging messages
(also referred to as transactions). Money can expressed as
special bits stored on the blockchain interpreted as a ledger.
Our contracts can access and update the ledger to imple-
ment money transfers between users (as represented by their
pseudonymous public keys).

First, our model allow us to easily capture the time and
pseudonym features of cryptocurrencies. In cryptocurren-
cies such as Bitcoin and Ethereum, time progresses in block
intervals, and a smart contract program is allowed to query
the current time, and make decisions accordingly, e.g., make
a refund operation after a timeout. Second, our model cap-
tures the role of a smart contract as a party trusted for cor-
rectness but not for privacy. Third, our formalism modular-
izes our notations by factoring out common specifics related
to the smart contract execution model, and implementing
these in central wrappers.

In a real-life cryptocurrency system such as Bitcoin or
Ethereum, users can make up any number of identities by
generating new public keys. In our formal model, for sim-
plicity, we assume that there can be any number of identities
in the system, and that they are fixed a priori. It is easy to
extend our model to capture registration of new identities
dynamically. As mentioned later, we allow each identity to
generate an arbitrary (polynomial) number of pseudonyms.

2.1 Programs, Functionalities, and Wrappers

To make our notations simple for writing ideal function-
alities and smart contracts, we make a conscious notational
choice of introducing wrapper functionalities. Wrapper func-
tionalities implement in a central place a set of common fea-
tures (e.g., timer, ledger, pseudonyms) that are applicable
to all ideal functionalities and contracts in our smart con-
tract model of execution. In this way, we can modularize
our notational system such that these common and tedious
details need not be repeated in writing ideal functionalities
and contract programs.

In particular, we will have two types of wrapper function-
alities:

Contract functionality wrapper G: A contract function-
ality wrapper G(C) takes in a contract program denoted C,
and produces a contract functionality. Our real world proto-
cols will be defined in the G(C)-hybrid world. Our contract
functionality wrapper is formally presented in Figure

Like the ideal functionality wrapper F(-), the contract
wrapper also implements standard features such as a timer,
a global ledger, and money transfers between parties. In ad-
dition, the contract wrapper also models the specifics of the
smart contract execution model. We point out the following
important facts about the G(-) wrapper:

o Trusted for correctness but not privacy. The contract
functionality wrapper G(-) stipulates that a smart con-
tract is trusted for correctness but not for privacy. In
particular, the contract wrapper exposes the contract’s
internal state to any party that makes a query.

o Time and batched processing of messages. In popular de-
centralized cryptocurrencies such as Bitcoin and Ethereum,
time progresses in block intervals marked by the creation
of each new block. Intuitively, our G(-) wrapper captures
the following fact. In each round (i.e., block interval),

the smart contract program may receive multiple mes-
sages (also referred to as transactions in the cryptocur-
rency literature). The order of processing these trans-
actions is determined by the miner who mines the next
block. In our model, we allow the adversary to specify
an ordering of the messages collected in a round, and our
contract program will then process the messages in this
adversary-specified ordering.

e Rushing adversary. The contract wrapper G(-) naturally
captures a rushing adversary. Specifically, the adversary
can first see all messages sent to the contract by honest
parties, and then decide its own messages for this round,
as well as an ordering in which the contract should pro-
cess the messages in the next round. Modeling a rush-
ing adversary is important, since it captures a class of
well-known front-running attacks, e.g., those that exploit
transaction malleability [10125]. For example, in a “rock,
paper, scissors” game, if inputs are sent in the clear, an
adversary can decide its input based on the other party’s
input. An adversary can also try to maul transactions
submitted by honest parties to potentially redirect pay-
ments to itself. Since our model captures a rushing ad-
versary, we can write ideal functionalities that preclude
such front-running attacks.

Ideal functionality wrapper F: An ideal functionality
F(idealP) takes in an ideal program denoted idealP. Specifi-
cally, the wrapper F(-) part defines standard features such
as time, pseudonyms, a public ledger, and money transfers
between parties. Our ideal functionality wrapper is formally
presented in Figure

Protocol wrapper II: Our protocol wrapper allows us to
modularize the presentation of user protocols. Our protocol
wrapper is formally presented in Figure 5]

Terminology. For disambiguation, we always refer to the
user-defined portions as programs. Programs alone do not
have complete formal meanings. However, when programs
are wrapped with functionality wrappers (including F(-)
and G(-)), we obtain functionalities with well-defined for-
mal meanings. Programs can also be wrapped by a protocol
wrapper Il to obtain a full protocol with formal meanings.

2.2 Modeling Time

At a high level, we express time in a way that conforms
to the Universal Composability framework [19]. In the ideal
world execution, time is explicitly encoded by a variable T’
in an ideal functionality F(idealP). In the real world execu-
tion, time is explicitly encoded by a variable T in our con-
tract functionality G(C). Time progresses in rounds. The
environment £ has the choice of when to advance the timer.

We assume the following convention: to advance the timer,
the environment £ sends a “tick” message to all honest par-
ties. Honest parties’ protocols would then forward this mes-
sage to F(idealP) in the ideal-world execution, or to the
G(C) functionality in the real-world execution. On collect-
ing “tick” messages from all honeset parties, the F(idealP) or
G(C) functionality would then advance the time T := T + 1.
The functionality also allows parties to query the current
time 7.

As mentioned earlier, when multiple messages arrive at
the blockchain in a time interval, we allow the adversary



F(idealP) functionality

Given an ideal program denoted idealP, the F(idealP) functionality is defined as below:
Init: Upon initialization, perform the following:

Time. Set current time 7" := 0. Set the receive queue rqueue := {).

Pseudonyms. Set nyms := {(P1, P1),...,(Pn, Pn)}, i.e., initially every party’s true identity is recorded as a default
pseudonym for the party.

Ledger. A ledger dictionary structure ledger[P] stores the endowed account balance for each identity P € {P,..., Pn}.
Before any new pseudonyms are generated, only true identities have endowed account balances. Send the array ledger]]
to the ideal adversary S.

idealP.Init. Run the Init procedure of the idealP program.
Tick: Upon receiving tick from an honest party P: notify S of (tick, P). If the functionality has collected tick
confirmations from all honest parties since the last clock tick, then

Call the Timer procedure of the idealP program.

Apply the adversarial permutation perm to the rqueue to reorder the messages received in the previous round.

For each (m, P) € rqueue in the permuted order, invoke the delayed actions (in gray background) defined by ideal

program idealP at the activation point named “Upon receiving message m from pseudonym P”. Notice that the program
idealP speaks of pseudonyms instead of party identifiers. Set rqueue := 0.

Set T:=T+1
Other activations: Upon receiving a message of the form (m, P) from a party P:

Assert that (P, P) € nyms.

Invoke the immediate actions defined by ideal program idealP at the activation point named “Upon receiving message
m from pseudonym P”.

Queue the message by calling rqueue.add(m, P).
Permute: Upon receiving (permute, perm) from the adversary S, record perm.

GetTime: On receiving gettime from a party P, notify the adversary S of (gettime, P), and return the current time 7'
to party P.

GenNym: Upon receiving gennym from an honest party P: Notify the adversary S of gennym. Wait for S to respond with
a new nym P such that P ¢ nyms. Now, let nyms := nymsU {(P, P)}, and send P to P. Upon receiving (gennym, P) from
a corrupted party P: if P ¢ nyms, let P := nyms U {(P, P)}.

Ledger operations: // inner activation
Transfer: Upon receiving (transfer,amount, P,) from some pseudonym P;:
Notify (transfer,amount, P, Ps) to the ideal adversary S.
Assert that ledger[P;] > amount.
ledger[P;] := ledger[Ps] — amount
ledger[P;] := ledger[P;] + amount
/* Ps, P. can be pseudonyms or true identities. Note that each party’s identity is a default pseudonym for the party. */

Expose: On receiving exposeledger from a party P, return ledger to the party P.

Figure 3: The F(idealP) functionality is parameterized by an ideal program denoted idealP. An ideal program idealP can
specify two types of activation points, immediate activations and delayed activations. Activation points are invoked upon
recipient of messages. Immediate activations are processed immediately, whereas delayed activations are collected and batch
processed in the next round. The F(-) wrapper allows the ideal adversary S to specify an order perm in which the messages
should be processed in the next round. For each delayed activation, we use the leak notation in an ideal program idealP to
define the leakage which is immediately exposed to the ideal adversary S upon recipient of the message.



G(C) functionality

Given a contract program denoted C, the G(C) functionality is defined as below:
Init: Upon initialization, perform the following:

A ledger data structure ledger[P] stores the account balance of party P. Send the entire balance ledger to .A.

Set current time 7" := 0. Set the receive queue rqueue := ().

Run the Init procedure of the C program.

Send the C program’s internal state to the adversary A.
Tick: Upon receiving tick from an honest party, if the functionality has collected tick confirmations from all honest
parties since the last clock tick, then

Apply the adversarial permutation perm to the rqueue to reorder the messages received in the previous round.

Call the Timer procedure of the C program.

Pass the reordered messages to the C program to be processed. Set rqueue := ().
Set T:=T+1

Other activations:

e Authenticated receive: Upon receiving a message (authenticated, m) from party P:

Send (m, P) to the adversary A
Queue the message by calling rqueue.add(m, P).
e Pseudonymous receive: Upon receiving a message of the form (pseudonymous,m, P, o) from any party:
Send (m, P, o) to the adversary A
Parse o := (nonce,¢’), and assert Verify(P.spk, (nonce, T, P.epk,m),o’) = 1

If message (psgudonymous,m,P, o) has not been received earlier in this round, queue the message by calling
rqueue.add(m, P).

e Anonymous receive: Upon receiving a message (anonymous, m) from party P:
Send m to the adversary A
If m has not been seen before in this round, queue the message by calling rqueue.add(m).

Permute: Upon receiving (permute, perm) from the adversary A, record perm.

Expose: On receiving exposestate from a party P, return the functionality’s internal state to the party P. Note that
this also implies that a party can query the functionality for the current time 7.

Ledger operations: // inner activation

Transfer: Upon recipient of (transfer,amount, P.) from some pseudonym Ps:

Assert ledger[Ps] > amount
ledger[P;] := ledger[Ps] — amount

ledger[Py] := ledger[P] + amount

Figure 4: The G(C) functionality is parameterized by a contract program denoted C. The G(-) wrapper mainly performs the
following: i) exposes all of its internal states and messages received to the adversary; i) makes the functionality time-aware:
messages received in one round and queued and processed in the next round. The G(-) wrapper allows the adversary to specify
an ordering to the messages received by the contract in one round.



II(prot) protocol wrapper in the G(C)-hybrid world
Given a party’s local program denoted prot, the II(prot) functionality is defined as below:
Pseudonym related:

GenNym: Upon receiving input gennym from the environment £, generate (epk, esk) < Keygen_  (1*), and (spk, ssk) «+
Keygensign(lk), Call payload := prot. GenNym(1*, (epk, spk)). Store nyms := nyms U {(epk, spk, payload)}, and output
(epk, spk, payload) as a new pseudonym.

Send: Upon receiving internal call (send, m, P):

If P == P: send (authenticated, m) to G(C).  // this is an authenticated send
Else, // this is a pseudonymous send
Assert that pseudonym P has been recorded in nyms;

Query current time T from G(C). Compute o’ := Sign(ssk, (nonce, T', epk, m)) where ssk is the recorded secret signing
key corresponding to P, nonce is a freshly generated random string, and epk is the recorded public encryption key
corresponding to P. Let o := (nonce, o’).

Send (pseudonymous, m, P, o) to G(C).

AnonSend: Upon receiving internal call (anonsend, m, P): send (anonymous, m) to G(C).

Timer and ledger transfers:

Transfer: Upon receiving input (transfer, $amount, P., P) from the environment &:

Assert that P is a previously generated pseudonym.

Send (transfer, $amount, PT) to G(C) as pseudonym P.

Tick: Upon receiving tick from the environment &, forward the message to G(C).

Other activations:
Act as pseudonym: Upon receiving any input of the form (m, P) from the environment &:

Assert that P was a previously generated pseudonym.

Pass (m, P) the party’s local program to process.

Others: Upon receiving any other input from the environment &£, or any other message from a party: Pass the input/mes-
sage to the party’s local program to process.

Figure 5: Protocol wrapper.




to choose a permutation to specify the order in which the
blockchain will process the messages. This captures poten-
tial network attacks such as delaying message propagation,
and front-running attacks (a.k.a. rushing attacks) where
an adversary determines its own message after seeing what
other parties send in a round.

2.3 Modeling Pseudonyms

We model a notion of “pseudonymity” that provides a form
of privacy, similar to that provided by typical cryptocurren-
cies such as Bitcoin. Any user can generate an arbitrary
(polynomially-bounded) number of pseudonyms, and each
pseudonym is “owned” by the party who generated it. The
correspondence of pseudonyms to real identities is hidden
from the adversary.

Effectively, a pseudonym is a public key for a digital sig-
nature scheme, the corresponding private key to which is
known by the party who “owns” the pseudonym. The pub-
lic contract functionality allows parties to publish authen-
ticated messages that are bound to a pseudonym of their
choice. Thus each interaction with the public contract is,
in general, associated with a pseudonym but not to a user’s
real identity.

We abstract away the details of pseudonym management
by implementing them in our wrappers. This allows user-
defined applications to be written very simply, as though
using ordinary identities, while enjoying the privacy benefits
of pseudonymity.

Our wrapper provides a user-defined hook, “gennym”, that
is invoked each time a party creates a pseudonym. This al-
lows the application to define an additional per-pseudonym
payload, such as application-specific public keys. From the
point-of-view of the application, this is simply an initializa-
tion subroutine invoked once for each participant.

Our wrapper provides several means for users to commu-
nicate with a contract. The most common way is for a user
to publish an authenticated message associated with one of
their pseudonyms, as described above. Additionally, “anon-
send” allows a user to publish a message without reference
to any pseudonym at all.

In spite of pseudonymity, it is sometimes desirable to as-
sign a particular user to a specific role in a contract (e.g.,
“auction manager”). The alternative is to assign roles on
a “first-come first-served” basis (e.g., as the bidders in an
auction). To this end, we allow each party to define gen-
erate a single “default” pseudonym which is publicly-bound
to their real identity. We allow applications to make use
of this through a convenient abuse of notation, by simply
using a party identifier as a parameter or hardcoded string.
Strictly speaking, the pseudonym string is not determined
until the “gennym” subroutine is executed; the formal in-
terpretation is that whenever such an identity is used, the
default pseudonym associated with the identity is fetched
from the contract. (This approach is effectively the same
as taken by Canetti [20], where a functionality Fca allows
each party to bind their real identity to a single public key
of their choice).

2.4 Modeling Money

We model money as a public ledger, which associates
quantities of money to pseudonyms. Users can transfer
funds to each other (or among their own pseudonyms) by
sending “transfer” messages to the public contract (as with

other messages, these are delayed util the next round and
may be delivered in any order). The ledger state is public
knowledge, and can be queried immediately using the “ex-
poseledger” instruction.

There are many conceivable policies for introducing new
currency into such a system: for example, Bitcoin “mints”
new currency as a reward for each miner who solves a proof-
of-work puzzles. We take a simple approach of defining
an arbitrary, publicly visible (i.e., common knowledge) ini-
tial allocation that associates a quantity of money to each
party’s real identity. Except for this initial allocation, no
money is created or destroyed.

2.5 Conventions for Writing Programs

Thanks to our wrapper-based modularized notational sys-
tem, The ideal program and the contract program are the
main locations where user-supplied, custom program logic
is defined. We use the following conventions for writing the
ideal program and the contract program.

Timer activation points. Every time F(idealP) or G(C)
advances the timer, it will invoke a Timer interrupt call.
Therefore, by convention, we allow the ideal program or
the contract program can define a Timer activation point.
Timeout operations (e.g., refunding money after a certain
timeout) can be implemented under the Timer activation
point.

Delayed processing in ideal programs. When writing
the contract program, every message received by the con-
tract program is already delayed by a round due to the G(+)
wrapper.

When writing the ideal program, we introduce a sim-
ple convention to denote delayed computation. Program
instructions that are written in gray background denote
computation that does not take place immediately, but is
deferred to the beginning of the next timer click. This is
a convenient shorthand because in our real-world protocol,
effectively any computation done by a contract functionality
will be delayed. For example, in our ldealc,sh ideal program
(see Figure , whenever the ideal functionality receives a
mint or pour message, the ideal adversary S is notified im-
mediately; however, processing of the messages is deferred
till the next timer click. Formally, delayed processing can
be implemented simply by storing state and invoking the
delayed program instructions on the next Timer click. To
avoid ambiguity, we assume that by convention, the delayed
instructions are invoked at the beginning of the Timer call.
In other words, upon the next timer click, the delayed in-
structions are executed first.

Pseudonymity. All party identifiers that appear in ideal
programs, contract programs, and user-side programs by de-
fault refer to pseudonyms. When we write “upon receiving
message from some P”, this accepts a message from any
pseudonym. Whenever we write “upon receiving message
from P”, without the keyword some, this accepts a message
from a fixed pseudonym P, and typically which pseudonym
we refer to is clear from the context.

Whenever we write “send m to G(Contract) as nym P” in-
side a user program, this sends an internal message (“send”,
m, P) to the protocol wrapper II. The protocol wrap-
per will then authenticate the message appropriately under
pseudonym P. When the context is clear, we avoid writ-



ing “as nym P”, and simply write “send m to G(Contract)”.
Our formal system also allows users to send messages anony-
mously to a contract — although this option will not be used
in this paper.

Ledger and money transfers. A public dedger is denoted
ledger in our ideal programs and contract programs. When a
party sends $amt to an ideal program or a contract program,
this represents an ordinary message transmission. Money
transfers only take place when ideal programs or contract
programs update the public ledger ledger. In other words,
the symbol $ is only adopted for readability (to distinguish
variables associated with money and other variables), and
does not have special meaning or significance. One can sim-
ply think of this variable as having the money type.

2.6 Composability and Multiple Contracts

Extending to multiple contracts. So far, our formal-
ism only models a single running instance of a user-specified
contract (@priv, Ppub). It will not be too hard to extend
the wrappers to support multiple contracts sharing a global
ledger, clock, pseudonyms, and ContractCash (i.e, private
cash). While such an extension is straightforward (and would
involve segragating different instances by associating them
with a unique session string or subsession string, which we
omit in our presentation), one obvious drawback is that this
would result in a monolithic functionality consisting of all
contract instances. This means that the proof also has to
be done in a monolithic manner simultaneously proving all
active contracts in the system.

Future work. To further modularize our functionality and
proof, new composition theorems will be needed that are
not covered by the current UC [19] or extended models such
as GUC [21] and GNUC [34]. We give a brief discussion
of the issues below. Since our model is expressed in the
Universal Composability framework, we could apply to our
functionalities and protocols standard composition opera-
tors, such as the multi-session extension [22]. However, a
direct application of this operator to the wrapped function-
ality F(ldealhawk) would give us multiple instances of sepa-
rate timers and ledgers, one for each contract - which is not
what we want! The Generalized UC (GUC) framework [21]
is a better starting point; it provides a way to compose mul-
tiple instances of arbitrary functionalies along with a single
instance of a shared functionality as a common resource. To
apply this to our scenario, we would model the timer and
ledger as a single shared functionality, composed with an
arbitrary number of instances of Hawk contracts. However,
even the GUC framework is inadequate for our needs since it
does not allow interaction between the shared functionality
and others, so this approach cannot be applied directly. In
our ongoing work, we further generalize GUC and overcome
these technical obstacles and more. As these details are
intricate and unrelated to our contributions here, we defer
further discussion to a forthcoming manuscript.

A remark about UC and Generalized UC. A subtle
distinction between our work and that of Kiayias et al. [36] is
that while we use the ordinary UC framework, Kiayias et al.
define their model in the GUC framework [21]. Generalized
UC definitions appear a priori to be stronger. However, we
believe the GUC distinction is unnecessary, and our defini-
tion is equally strong; in particular, since the clock, ledger,
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Idealcash
Init:
Mint:

Coins: a multiset of coins, each of the form (P, $val)
Upon receiving (mint, $val) from some P:

send (mint, P, $val) to A

assert ledger[P] > $val

ledger[P] := ledger[P] — $val

append (P, $val) to Coins

Pour:  On (pour, $vali, $valz, P1, Pa, $val’, $valy) from P:

assert $val; + $vala = $val| + $val}
if P is honest,
assert (P, $val;) € Coins for ¢ € {1,2}
assert P; # L for i € {1,2}
remove one (P, $val;) from Coins for i € {1,2}
for i € {1,2}, if P; is corrupted, send (pour, %,
Pi, $val}) to A; else send (pour,i, P;) to A
if P is corrupted:
assert (P, $val;) € Coins for ¢ € {1,2}
remove one (P, $val;) from Coins for ¢ € {1,2}
for i € {1,2}: add (P;, $val}) to Coins
for ¢ € {1,2}: if P; # L, send (pour, $val}) to P;

Figure 6: Definition of Idealcasn. Notation: ledger
denotes the public ledger, and Coins denotes the private pool
As mentioned in Section gray background
denotes batched and delayed activation. All party names

correspond to pseudonyms due to notations and conventions
defined in Section 2

of coins.

and pseudonym functionality involves no private state and
is available in both the real and ideal worlds, the simula-
tor cannot, for example, present a false view of the current
round number. We plan to formally clarify this in a forth-
coming work.

3. CRYPTOGRAPHY ABSTRACTIONS

We now describe our cryptography abstraction in the form
of ideal programs. Ideal programs define the correctness
and security requirements we wish to attain by writing a
specification assuming the existence of a fully trusted party.
We will later prove that our real-world protocols (based on
smart contracts) securely emulate the ideal programs. As
mentioned earlier, an ideal program must be combined with
a wrapper F to be endowed with exact execution semantics.

Overview. Hawk realizes the following specifications:

e Private ledger and currency transfer. Hawk relies on the
existence of a private ledger that supports private cur-
rency transfers. We therefore first define an ideal func-
tionality called Idealcasn that describes the requirements
of a private ledger (see Figure [6]). Informally speaking,
earlier works such as Zerocash [10] are meant to realize
(approximations of) this ideal functionality — although
technically this ought to be interpreted with the caveat
that these earlier works prove indistinguishability or game-
based security instead UC-based simulation security.

e Hawk-specific primitives. With a private ledger specified,



we then define Hawk-specific primitives including freeze,
compute, and finalize that are essential for enabling trans-
actional privacy and programmability simultaneously.

3.1 Private Cash Specification Ideal...:

At a high-level, the ldealcasn specifies the requirements of
a private ledger and currency transfer. We adopt the same
“mint” and “pour” terminology from Zerocash [10].

Mint. The mint operation allows a user P to transfer money
from the public ledger denoted ledger to the private pool
denoted Coins[P]. With each transfer, a private coin for
user P is created, and associated with a value val.

For correctness, the ideal program ldealc,sh checks that
the user P has sufficient funds in its public ledger ledger[P]
before creating the private coin.

Pour. The pour operation allows a user P to spend money
in its private bank privately. For simplicity, we define the
simple case with two input coins and two output coins. This
is sufficient for users to transfer any amount of money by
“making change,” although it would be straightforward to
support more efficient batch operations as well.

For correctness, the ideal program ldeal.,sh checks the fol-
lowing: 1) for the two input coins, party P indeed possesses
private coins of the declared values; and 2) the two input
coins sum up to equal value as the two output coins, i.e.,
coins neither get created or vanish.

Privacy. When an honest party P mints, the ideal-world
adversary A learns the pair (P, val) — since minting is raising
coins from the public pool to the private pool. Operations
on the public pool are observable by A.

When an honest party P pours, however, the adversary
A learns only the output pseudonyms P; and P2. It does
not learn which coin in the private pool Coins is being spent
nor the name of the spender. Therefore, the spent coins
are anonymous with respect to the private pool Coins. To
get strong anonymity, new pseudonyms P; and P2 can be
generated on the fly to receive each pour. We stress that as
long as pour hides the sender, this “breaks” the transaction
graph, thus preventing linking analysis.

If a corrupted party is the recipient of a pour, the adver-
sary additionally learns the value of the coin it receives.

Additional subtleties. Later in our protocol, honest par-
ties keep track of a wallet of coins. Whenever an honest
party pours, it first checks if an appropriate coin exists in
its local wallet — and if so it immediately removes the coin
from the wallet (i.e., without delay). In this way, if an hon-
est party makes multiple pour transactions in one round,
it will always choose distinct coins for each pour transac-
tion. Therefore, in our Idealcasnfunctionality, honest pour-
ers’ coins are immediately removed from Coins. Further, an
honest party is not able to spend a coin paid to itself until
the next round. By contrast, corrupted parties are allowed
to spend coins paid to them in the same round — this is due
to the fact that any message is routed immediately to the
adversary, and the adversary can also choose a permutation
for all messages received by the contract in the same round
(see Section [2)).

Another subtlety in the ldealcasnfunctionality is that hon-
est parties will always pour to existing pseudonyms. How-
ever, the functionality allows the adversary to pour to non-
existing pseudonyms denoted L — in this case, effectively the
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private coin goes into a blackhole and cannot be retrieved.
This enables a performance optimization in our ProtCash
and ContractCash protocol later — where we avoid including
the ct;’s in the NIZK of Lpour (see Section . If a mali-
cious pourer chooses to compute the wrong ct;, it is as if the
recipient P; did not receive the pour, i.e., the pour is made
to L.

3.2 Hawk Specification Ideal;...

To enable transactional privacy and programmability si-
multaneously, we now describe the specifications of new Hawk
primitives, including freeze, compute, and finalize. The for-
mal specification of the ideal program ldealyawk is provided
in Figure[7] Below, we provide some explanations. We also
refer the reader to Section for higher-level explanations.

Freeze. In freeze, a party tells Idealhawk to remove one
coin from the private coins pool Coins, and freeze it in the
contract by adding it to ContractCoins. The party’s private
input denoted in is also recorded in ContractCoins. ldealhawk
checks that P has not called freeze earlier, and that a coin
(P, val) exists in Coins before proceeding with the freeze.

Compute. When a party P calls compute, its private input
in and the value of its frozen coin val are disclosed to the
manager Pag.

Finalize. In finalize, the manager P submits a public
input inaq to ldealpawk. ldealhawkx now computes the outcome
of ¢priv on all parties’ inputs and frozen coin values, and
redistribute the ContractCoins based on the outcome of ¢priv.
To ensure money conservation, the ideal program ldealyawx
checks that the sum of frozen coins is equal to the sum of
output coins.

Interaction with public contract. The ldealpawik func-
tionality is parameterized by an ordinary public contract
@pub, which is included in ldealhawk as a sub-module.  Dur-
ing a finalize, ldealhawk calls ¢pun.check. The public con-
tract ¢pup typically serves the following purposes:

e Check the well-formedness of the manager’s input inpq.
For example, in our financial derivatives application (Sec-
tion , the public contract ¢pup asserts that the input
corresponds to the price of a stock as reported by the
stock exchange’s authentic data feed.

e Redistribute public deposits. If parties or the manager
have aborted, or if a party has provided invalid input
(e.g., less than a minimum bet) the public contract ¢pub
can now redistribute the parties’ public deposits to en-
sure financial fairness. For example, in our “Rock, Paper,
Scissors” example (see Section , the private contract
¢priv checks if each party has frozen the minimal bet. If
not, ¢priv includes that information in out so that ¢pun
pays that party’s public deposit to others.

Security and privacy requirements. The ldeal,awk spec-
ifies the following privacy guarantees. When an honest party
P freezes money (e.g., a bid), the adversary should not ob-
serve the amount frozen. However, the adversary can ob-
serve the party’s pseudonym P. We note that leaking the
pseudonym P does not hurt privacy, since a party can simply
create a new pseudonym P and pour to this new pseudonym
immediately before the freeze.

When an honest party calls compute, the manager P



Idealnawk (Pat, {Piticings T1, T2, Ppriv, Gpub)
Init: Call Ideal g . Init. Additionally:

ContractCoins: a set of coins and private in-
puts received by this contract, each of the form
(P, in, $val). Initialize ContractCoins := ().

Freeze: Upon receiving (freeze, $val;, in;) from P; for some
i € [N]:
assert current time T < Tj
assert P; has not called freeze earlier.
assert at least one copy of (P;, $val;) € Coins
send (freeze, P;) to A
add (P;, $val;, in;) to ContractCoins

remove one (P;, $val;) from Coins
Compute: Upon receiving compute from P; for some i € [N]:

assert current time 177 < T < T»

if Paq is corrupted, send (compute, P;, $val;,in;)
to A

else send (compute, P;) to A

let  (P;,8val;,in;) be the item in
ContractCoins corresponding to P;

send (compute, P;, $val;,in;) to Py
Finalize: Upon receiving (finalize, inag, out) from Pay:
assert current time T > Th
assert P has not called finalize earlier
for ¢ € [N]:
let ($val;,in;) := (0,L1) if P; has not called
compute
({8val}}, out?) := dpriv({Sval;,in;},inpq)
assert out’ = out
assert 3, Sval; = 30, v Sval;
send (finalize,inaq,out) to A

for each corrupted P; that called compute: send

(Ps, $val;) to A

call ¢pup.check(inpy, out)

for ¢ € [N] such that P; called compute:
add (P;, $val;) to Coins
send (finalize, $val}) to P;

¢pub: Run a local instance of public contract ¢pu1,. Mes-
sages between the adversary to ¢pup, and from ¢p,1,
to parties are forwarded directly.

Upon receiving message (pub,m) from party P:
notify A of (pub,m)
send m to ¢pyup on behalf of P

Idealcasn: include Idealcasn (Figure [6).

Figure T: Definition of Idealhawk- Notations:
ContractCoins denotes frozen coins owned by the contract;
Coins denotes the global private coin pool defined by
Idealcash; and (in;,val;) denotes the input data and frozen
coin value of party P;.

12

gets to observe its input and frozen coin’s value. However,
the public and other contractual parties do not observe any-
thing (unless the manager voluntarily discloses information).

Finally, during a finalize operation, the output out is
declassified to the public — note that out can be empty if we
do not wish to declassify any information to the public.

It is not hard to see that our ideal program ldealyawk sat-
isfies input independent privacy and authenticity against a
dishonest manager. Further, it satisfies posterior privacy as
long as the manager does not voluntarily disclose informa-
tion. Intuitive explanations of these security/privacy prop-
erties were provided in Section [[-2}

Timing and aborts. Our ideal program ldealy.wx requires
that freeze operations be done by time 77, and that com-
pute operations be done by time T5. If a user froze coins
but did not open by time 7%, our ideal program ldealyawk
treats (in;,val;) := (0, L), and the user P; essentially for-
feits its frozen coins. Managerial aborts is not handled inside
Idealhawk, but by the public portion of the contract.

Simplifying assumptions. For clarity, our basic version
of ldealhawk is a stripped down version of our implementa-
tion. Specifically, our basic Idealhawk and protocols do not
realize refunds of frozen coins upon managerial abort. As
mentioned in Section 4.3} it is not hard to extend our pro-
tocols to support such refunds.

Other simplifying assumptions we made include the fol-

lowing. Our basic ldealyawk assumes that the set of pseudonyms

participating in the contract as well as timeouts 77 and Ts
are hard-coded in the program. This can also be easily re-
laxed as mentioned in Section [£3l

4. CRYPTOGRAPHIC PROTOCOLS

4.1 Protocol Description

Our protocols are broken down into two parts: 1) the pri-
vate cash part that implements direct money transfers be-
tween users; and 2) the Hawk-specific part that binds trans-
actional privacy with programmable logic. The formal pro-
tocol descriptions are given in Figures [§] and [0] Below we
explain the high-level intuition.

4.1.1 Warmup: Private Cash and Money Transfers

Our construction adopts a Zerocash-like protocol for im-
plementing private cash and private currency transfers. For
completeness, we give a brief explanation below, and we
mainly focus on the pour operation which is technically more
interesting. The contract ContractCash maintains a set Coins
of private coins. Each private coin is stored in the format

(P, coin := Comm;($val))

where P denotes a party’s pseudonym, and coin commits to
the coin’s value $val under randomness s.

During a pour operation, the spender P chooses two coins
in Coins to spend, denoted (P,coini) and (P, coinz) where
coin; := Commg,($val;) for ¢ € {1,2}. The pour opera-
tion pays valj and val, amount to two output pseudonyms
denoted P; and P2 respectively, such that val; + vala =
vali + valy. The spender chooses new randomness s; for
1 € {1,2}, and computes the output coins as

P, coin; := Commy,, ($val})
( ((sval))



ContractCash

Init: crs: a reference string for the underlying NIZK system
Coins: a set of coin commitments, initially ()
SpentCoins: set of spent serial numbers, initially @
Mint: Upon receiving (mint, $val, s) from some party P,
coin := Commg($val)
assert (P, coin) ¢ Coins
assert ledger[P] > $val
ledger[P] := ledger[P] — $val
add (P, coin) to Coins
Pour: Anonymous receive (pour, , {sn;, P;, coin;, ct; }ic (1,2} })
let MT be a merkle tree built over Coins
statement := (MT.root, {sn;, P;, coin; };c(1,2})
assert NIZK.Verify(Lpgur, 7, statement)
for i € {1,2},
assert sn; ¢ SpentCoins
assert (P;, coin;) ¢ Coins
add sn; to SpentCoins
add (P, coin;) to Coins
send (pour, coin;, ct;) to P;,

Relation (statement, witness) € Lpour is defined as:
parse statement as (MT.root, {sn;, P;, coinj};c(1,2})
parse witness as (P, skprs, {branch;, s;, $valy, s, 73, $val}})
assert P.pkye = PRFq ., (0)
assert $val; + $valy = $val| + $val),
for i € {1,2},
coin; := Commyg, ($val;)
assert MerkleBranch(MT .root, branch;, (P||coin;))
assert sn; = PRFg . (P|coin;)

. /
assert coin; = Commsg ($val;)

Protocol ProtCash

Init:  Wallet: stores P’s spendable coins, initially ()

iGenNym: sample a random seed skprs
Pkprs = PRFg (0)

return pky ¢

Mint: On input (mint, $val),
sample a commitment randomness s
coin := Commjg($val)
store (s, $val, coin) in Wallet
send (mint, $val, s) to G(ContractCash)

Pour (as sender): On input (pour, $vali, $vals, P, P2, $valf,
$valy),

assert $val; + $valy = $val| + $val),
for ¢ € {1,2}, assert (s;,$val;,coin;) € Wallet for some
(si, coing)
let MT be a merkle tree over ContractCash.Coins
for i € {1,2}:

remove one (s;, $val;, coin;) from Wallet

sn; 1= PRFSkPrf (P”COini)

let branch; be the branch of (P, coin;) in MT

sample randomness s/, 7;

coin} := Comms;($valg)

ct; := ENC(P;.epk, 7, $vall||s})
statement := (MT.root, {sn;, P;, coin} };c(1,2})
witness := (P, skprs, {branch;, s;, $vals, s, 74, $val}})
7 := NIZK.Prove(Lpgur, statement, witness)
AnonSend(pour, 7, {sn;, P;, coinj, ct; };c (1,2})

to G(ContractCash)

On receive (pour,coin,ct) from

Pour (as recipient):

G(ContractCash):
let ($vall|s) := DEC(skenc, ct)
assert Commy, ($val) = coin
store (s, $val, coin) in Wallet

output (pour, $val)

Figure 8: ProtCash construction. A trusted setup phase generates the NIZK’s common reference string crs. For notational
convenience, we omit writing the crs explicitly in the construction. The Merkle tree MT is stored in the contract and not
computed on the fly — we omit stating this in the protocol for notational simplicity. The protocol wrapper H(-) invokes
GenNym whenever a party creates a new pseudonym.
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ContractHawk(Pat, {Pi}icin), T1, T2, Gpriv, Gpub)
Init: See ldeal},, i for description of parameters
Call ContractCash.Init.
Freeze: Upon receiving (freeze, m,sn;,cm;) from P;:
assert current time T' < T}
assert this is the first freeze from P;
let MT be a merkle tree built over Coins
assert sn; ¢ SpentCoins
statement := (MT.root, sn;,cm;)
assert NIZK.Verify(Lrrerze, 7, statement)
add sn; to SpentCoins and store cm; for later
Compute: Upon receiving (compute, 7, ct) from P;:
assert Ty < T < Ts for current time T'
assert NIZK.Verify(chMpUTE, T, (PM ,cmg, Ct))
send (compute, P;,ct) to Pag
Finalize: On receiving (finalize,,inay, out, {coin}, ctitic[n))
from Pag:
assert current time T > Th
for every P; that has not called compute, set cm; := L
statement := (in a4, out, {cm;, coin}, ctitic[n))
assert N|ZK.Vet’ity([:[:11\11;1_‘;[2]37 T, Statement)
for i € [N]:
assert coin} ¢ Coins
add coin) to Coins
send (finalize, coin},ct;) to P;
Call ¢pup-check(in g, out)

ContractCash: include ContractCash

¢pub : include user-defined public contract ¢pu1,

Relation (statement, witness) € Lrrerze is defined as:
parse statement as (MT.root, sn,cm)
parse witness as (P, coin, skpre, branch, s, $val, in, k, )
coin := Commg($val)
assert MerkleBranch(MT .root, branch, (P||coin))
assert P.pkye = skprz(0)
assert sn = PRFg__, (P||coin)

assert cm = Commy, ($val||in||k)

Relation (statement, witness) € Lcompyte is defined as:
parse statement as (Paq,cm,ct)
parse witness as ($val,in, k, s’,r)
assert cm = Commy, ($val||in||k)
assert ct = ENC(Ppq.epk,r, ($val||in||k||s"))

Relation (statement, witness) € Lrmarize is defined as:
parse statement as (iny, out, {cm;, coin}, ct; }ic[n])
parse witness as {s;, val;, in;, s}, ki }ic(n)
({3vali}icings out) := ¢priv({Svals,ini}icny, inm)
assert >,y Sval; = 30, $val;
for ¢ € [N]:

assert cm; = Commy, ($val;||in;||k;))
V($val;,ing, ki, s5,em;) = (0, L, L, L, 1)
assert ct; = SENCy, (s}||$val})

VA /
assert coin; = Commsg (8val;)

Figure 9:

14

Protocol ProtHawk(Pat, {P:i}icing, T, T2, priv, Ppub)
Init: Call ProtCash.Init.

Protocol for a party P € {P;}ie[ny:
Freeze: On input (freeze, $val,in) as party P:
assert current time T' < T}
assert this is the first freeze input
let MT be a merkle tree over Contract.Coins
assert that some entry (s,$val, coin) € Wallet for some
(s, coin)
remove one (s, $val, coin) from Wallet
sn := PRFg, (P[|coin)
let branch be the branch of (P,coin) in MT
sample a symmetric encryption key k
sample a commitment randomness s’
cm := Commy, ($val||in|| k)
statement := (MT.root, sn, cm)
witness := (P, coin, skprt, branch, s, $val, in, k, s”)
7 := NIZK.Prove(Lrreeze, Statement, witness)
send (freeze, m,sn,cm) to G(ContractHawk)
store in, cm, $val, s’, and k to use later (in compute)
Compute: On input (compute) as party P:
assert current time 177 < T < T»
sample encryption randomness r
ct := ENC(Paq.epk, r, ($vall|in||k||s"))
7 := NIZK.Prove((Paq, cm, ct), ($val,in, k, s’, 7))
send (compute, 7, ct) to G(ContractHawk)
Finalize: Receive (finalize, coin,ct) from G(ContractHawk):
decrypt (s||$val) := SDEC/(ct)
store (s, $val, coin) in Wallet

output (finalize, $val)

Protocol for manager Pag:

Compute: On receive (compute, P;, ct) from G(ContractHawk):
decrypt and store ($val;||in;||k;||s;) := DEC(epk, ct)
store cm; := Commyg, ($val; ||in;||k;)
output (P;, $val;,in;)

If this is the last compute received:
for ¢ € [N] such that P; has not called compute,
($val;,ing, ki, s;,em;) == (0, L, L, L, 1)
({$Va|;}z€[N] ) OUt) = ¢priv({$va|iv ini}iG[N]: mM)
store and output ({$val}};c|n],out)

Finalize: On input (finalize,ina,out):
assert current time T > T
for ¢ € [N]:

sample a commitment randomness s;

coin} := Comm,, ($val;)

ct; := SENCy, (s} ||$val’;)
statement := (inq, out, {cm;, coinj, ct; };cn))
witness := {s;, $val;, in;, s}, ki }sc[n)
7 := NIZK.Prove(statement, witness)
send (finalize, T, in g, out, {coin}, ct;})

to G(ContractHawk)

ProtCash: include ProtCash.

ProtHawk construction.




The spender gives the values s; and val; to the recipient P;
for P; to be able to spend the coins later.

Now, the spender computes a zero-knowledge proof to
show that the output coins are constructed appropriately,
where correctness compasses the following aspects:

e [Lristence of coins being spent. The coins being spent

(P, coiny) and (P, coinz) are indeed part of the private pool
Coins. We remark that here the zero-knowledge property
allows the spender to hide which coins it is spending — this
is the key idea behind transactional privacy.
To prove this efficiently, ContractCash maintains a Merkle
tree MT over the private pool Coins. Membership in the
set can be demonstrated by a Merkle branch consistent
with the root hash, and this is done in zero-knowledge.

e No double spending. Each coin (P, coin) has a crypto-
graphically unique serial number sn that can be computed
as a pseudorandom function of P’s secret key and coin. To
pour a coin, its serial number sn must be disclosed, and a
zero-knowledge proof given to show the correctness of sn.
ContractCash checks that no sn is used twice.

e Money conservation. The zero-knowledge proof also at-
tests to the fact that the input coins and the output coins
have equal total value.

We make some remarks about the security of the scheme.
Intuitively, when an honest party pours to an honest party,
the adversary A does not learn the values of the output
coins assuming that the commitment scheme Comm is hid-
ing, and the NIZK scheme we employ is computational zero-
knowledge. The adversary A can observe the nyms that
receive the two output coins. However, as we remarked ear-
lier, since these nyms can be one-time, leaking them to the
adversary would be okay. Essentially we only need to break
linkability at spend time to ensure transactional privacy.

When a corrupted party P* pours to an honest party P,
even though the adversary knows the opening of the coin, it
cannot spend the coin (P, coin) once the transaction takes
effect by the ContractCash, since P* cannot demonstrate
knowledge of P’s secret key. We stress that since the con-
tract binds the owner’s nym P to the coin, only the owner
can spend it even when the opening of coin is disclosed.

Technical subtleties. Our ContractCash uses a modified
version of Zerocash to achieve stronger security in the sim-
ulation paradigm. In comparison, Zerocash adopts a strictly
weaker, indistinguishability-based privacy notion called ledger

indistinguishability. In multi-party protocols, indistinguishability-

based security notions are strictly weaker than simulation
security. Not only so, the particular ledger indistinguisha-
bility notion adopted by Zerocash [10] appears subtly ques-
tionable upon a careful examination, which we elaborate on
in the Appendix. This does not imply that the Zerocash
construction is necessarily insecure — however, there is no
obvious path to proving their scheme secure under a simu-
lation based paradigm.

4.1.2 Binding Privacy and Programmable Logic

So far, ContractCash, similar to Zerocash [10], only sup-
ports direct money transfers between users. We allow trans-
actional privacy and programmable logic simutaneously.

Freeze. We support a new operation called freeze, that
does not spend directly to a user, but commits the money as
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well as an accompanying private input to a smart contract.
This is done using a pour-like protocol:

e The user P chooses a private coin (P, coin) € Coins, where
coin := Commg($val). Using its secret key, P computes
the serial number sn for coin — to be disclosed with the
freeze operation to prevent double-spending.

e The user P computes a commitment (val|lin]|k) to the
contract where in denotes its input, and k is a symmet-
ric encryption key that is introduced due to a practical
optimization explained later in Section 2

e The user P now makes a zero-knowledge proof attesting
to similar statements as in a pour operation, i.e., that
the spent coin exists in the pool Coins, the sn is correctly
constructed, and that the val committed to the contract
equals the value of the coin being spent. See Lrperze in
Figure |§| for details of the NP statement being proven.

Compute. Next, computation takes place off-chain to com-
pute the payout distribution {val}};c},) and a proof of cor-
rectness. In Hawk, we rely on a minimally trusted manager
P to perform computation. All parties would open their
inputs to the manager Paq, and this is done by encrypting
the opening to the manager’s public key:

ct := ENC(Paq.epk, r, ($vallfin||k||s"))

The ciphertext ct is submitted to the smart contract along
with appropriate zero-knowledge proofs of correctness. While
the user can also directly send the opening to the manager
off-chain, passing the ciphertext ct through the smart con-
tract would make any aborts evident such that the contract
can financially punish an aborting user.

After obtaining the openings, the manager now computes
the payout distribution {val;};c},) and public output out by
applying the private contract ¢priv. The manager also con-
structs a zero-knowledge proof attesting to the outcomes.

Finalize. When the manager submits the outcome of ¢priv
and a zero-knowledge proof of correctness to ContractHawk,
ContractHawk verifies the proof and redistributes the frozen
money accordingly. Here ContractHawk also passes the man-
ager’s public input ina¢ and public output out to a public
contract denoted C. The public contract C can be invoked
to check the validity of the manager’s input, as well as re-
distribute public collateral deposit.

THEOREM 1. Assuming that the hash function in the Merkle
tree is collision resistant, the commitment scheme Comm
is perfectly binding and computationally hiding, the NIZK
scheme is computationally zero-knowledge and simulation
sound extractable, the encryption schemes ENC and SENC
are perfectly correct and semantically secure, the PRF scheme
PRF is secure, then, our protocols in Figures[§ and[] securely
emulates the ideal functionality F(ldealnawt).

ProOF. Deferred to the Appendix. []

4.2 Practical Considerations

Our scheme’s main performance bottleneck is computing
NIZK proofs. Specifically, NIZK proofs must be computed
whenever i) a user invokes a pour, freeze, or a compute
operation; and %) the manager calls finalize. In our im-
plementation, we use state-of-the-art SNARK constructions
to efficiently instantiate the NIZK proofs.



Efficient SNARK circuits. A SNARK prover’s perfor-
mance is mainly determined by the number of multiplication
gates in the algebraic circuit to be proven [12/46]. To achieve
efficiency, we designed optimized circuits through two ways:
1) using cryptographic primitives that are SNARK-friendly,
i.e. efficiently realizable as arithmetic circuits under a spe-

cific SNARK parametrization. For example, we use a SNARK-

friendly collision-resistant hash function [14] to realize the
Merkle tree circuit. 2) Building customized circuit genera-
tors instead of relying on compilers to translate higher level
implementation. For example, our circuits rely also on stan-
dard SHA-256, RSA-OAEP encryption, and RSA signature
verification (with 2048-bit keys for both), so hand-optimized
these components to reduce circuit size.

Subtleties related to the NIZK proofs. Some subtle
technicalities arise when we use SNARKS to instantiate NIZK
proofs. As mentioned in Theorem [I] we assume that our
NIZK scheme satisfies simulation sound extractability. Un-
fortunately, ordinary SNARKS do not offer simulation sound
extractability — and our simulator cannot simply use the

SNARK’s extractor since the SNARK extractor is non-blackbox,

and using the SNARK extractor in a UC-style simulation
proof would require running the environment in the extrac-
tor!

We therefore rely a generic transformation (see Appendix|B.2])

to build a simulation sound extractable NIZK from an ordi-
nary SNARK scheme.

Optimizations. We describe an optimization that greatly
enhances our performance. We therefore focus on optimiz-
ing the O(N)-sized finalize circuit since this is our main
performance bottleneck. All other SNARK proofs in our
scheme are for O(1)-sized circuits. Two key observations
allow us to greatly improve the performance of the proof
generation during finalize.

Optimization 1: Minimize SSE-secure NIZKs. First, we ob-
serve that in our proof, the simulator need not extract any
new witnesses when a corrupted manager submits proofs
during a finalize operation. All witnesses necessary will
have been learned or extracted by the simulator at this point.
Therefore, we can employ an ordinary SNARK instead of
a stronger simulation sound extractable NIZK during fi-
nalize. For freeze and compute, we still use the stronger
NIZK. This optimization reduces our SNARK circuit sizes
by 1.6x as shown in Table [2] of Section [5}

Optimization 2: Minimize public-key encryption in SNARKs.

Second, during finalize, the manager encrypts each party
Pi’s output coins to P;’s key, resulting in a ciphertext ct;.
The ciphertexts {ct;};c[n] would then be submitted to the
contract along with appropriate SNARK proofs of correct-
ness. Here, if a public-key encryption is employed to gen-
erate the ct;’s, it would result in relatively large SNARK
circuit size. Instead, we rely on a symmetric-key encryption
scheme denoted SENC in Figure [0] This requires that the
manager and each P; perform a key exchange to establish a
symmetric key k;. During an compute, the user encrypts this
k; to the manager’s public key Paq.epk, and prove that the
k encrypted is consistent with the k committed to earlier in
cm;. The SNARK proof during finalize now only needs to
include commitments and symmetric encryptions instead of
public key encryptions in the circuit — the latter much more
expensive. This second optimization additionally gains us
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a factor of 11x as shown in Table [2| of Section

4.3 Extensions and Discussions

Open enrollment of pseudonyms. In our current for-
malism, parties’ pseudonyms are hardcoded and known a
priori. We can easily relax this to allow open enrollment of
any pseudonym that joins the contract (e.g., in an auction).
Our implementation supports open enrollment.

Refunding frozen coins to users. In our implementa-
tion, we extend our basic scheme to allow the users to re-
claim their frozen money after a timeout 75 > T>. To achieve
this, user P simply sends the contract a newly constructed
coin (P, coin := Commy,($val)) and proves in zero-knowledge
that its value $val is equal to that of the frozen coin. In
this case, the user can identify the previously frozen coin in
the clear, i.e., there is no need to compute a zero-knowledge
proof of membership within the frozen pool as is needed in
a pour transaction.

Instantiating the manager with trusted hardware. In
some applications, it may be a good idea to instantiate the
manager using trusted hardware such as the emerging Intel
SGX. In this case, the off-chain computation can take place
in a secret SGX enclave that is not visible to any untrusted
software or users. Alternatively, in principle, the manager
role can also be split into two or more parties that jointly
run a secure computation protocol — although this approach
is likely to incur higher overhead.

We stress that our model is fundamentally different from
placing full trust in any centralized node. Trusted hardware
cannot serve as a replacement of the blockchain. Any off-
chain only protocol that does not interact with the block-
chain cannot offer financial fairness in the presence of aborts
— even when trusted hardware is employed.

Furthermore, even the use of SGX does not obviate the
need for our cryptographic protocol. If the SGX is trusted
only by a subset of parties (e.g., just the parties to a partic-
ular private contact), rather than globally, then those users
can benefit from the efficiency of an SGX-managed private
contract, while still utilizing the more widely trusted under-
lying currency.

Pouring anonymously to long-lived pseudonyms. In
our basic formalism of Idealcash, the pour operation discloses
the recipient’s pseudonyms to the adversary. This means
that ldealcasnh only retains full privacy if the recipient gen-
erates a fresh, new pseudonym every time. In comparison,
Zerocash |10] provides an option of anonymously spending
to a long-lived pseudonym (in other words, having ldealcash
not reveal recipients’ pseudonyms to the adversary).

It is not too hard to extend our protocols to allow pouring
anonymously to long-lived pseudonyms. However, in most
applications, since the transfer is typically subsequent to
some interaction between the sender and recipient anyway,
we opted for the approach of revealing recipients’ pseudonyms.
This not only keeps our core formalism simple, but also
achieves a constant factor speedup for our protocols.

Other modes of off-chain computation. In our current
Hawk compiler, off-chain computation of the private con-
tract Ppriv (e.g., determining the winner of an auction) is
performed by a manager. It is also not hard to extend our
formalism to support other modes of off-chain computation,
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Figure 10: Compiler overview. Circuit augmentation
for finalize.

i.e., through an interactive protocol among participants such
as secure multiparty computation. We defer the implemen-
tation of this to future work.

Remarks about the common reference string. SNARK
schemes require the generation of a common reference string
(CRS) during a pre-processing step. This common reference
string consists of an evaluation key for the prover, and a ver-
ification key for the verifier. Unless we employ recursively
composed SNARKs whose costs are significantly higher, the
evaluation key is circuit-dependent, and its size is propor-
tional to the circuit’s size. In comparison, the verification
key is O([in| 4 |out|) in size, i.e., depends on the total length
of inputs and outputs, but independent of the circuit size.
We stress that only the verification key portion of the CRS
needs to be included in the public contract that lives on the
blockchain.

We also remark that the CRS for protocol ProtCash is
shared globally, and can be generated in a one-time setup. In
comparison, the CRS for each Hawk contract would depend
on the Hawk contract, and therefore exists per instance of
Hawk contract. To minimize the trust necessary in the CRS
generation, one can employ either trusted hardware or use
secure multi-party computation techniques as described by
Ben-Sasson et al. |13].

S. IMPLEMENTATION

To demonstrate feasibility and estimate the practical costs,
we developed a prototype of Hawk.

5.1 Compiler Implementation

Our compiler consists of several steps, which we illustrate
in Figure [I0] and describe below:

Preprocessing: First, the input Hawk program is split into its
public contract and private contract components. The public
contract is Serpent code, and can be executed directly atop
an ordinary cryptocurrency platform such as Ethereum. The
private contract is written in a subset of the C language,
and is passed as input to the Pinocchio arithmetic circuit
compiler [46]. Keywords such as are
implemented as C preprocessors macros, and serve to define
the input (Inp) and output (Outp) datatypes. Currently,
our private contract inherits the limitations of the Pinoc-
chio compiler, e.g., cannot support dynamic-length loops.
In the future, we can relax these limitations by employing
recursively composition of SNARKs.

Clircuit Augmentation: After compiling the preprocessed pri-
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vate contract code with Pinocchio, we have an arithmetic
circuit representing the input/output relation ¢priv. This be-
comes a subcomponent of a larger arithmetic circuit, which
we assemble using a customized circuit assembly tool. This
tool is parameterized by the number of parties and the in-
put/output datatypes, and attaches cryptographic constraints,
such as computing commitments and encryptions over each
party’s output value, and asserting that the input and out-
put values satisfy the balance property.

Cryptographic Protocol: Finally, the augmented arithmetic
circuit is used as input to a state-of-the-art zkSNARK li-
brary, Libsnark [15]. To avoid implementing SNARK ver-
ification in Ethereum’s Serpent language, we must add a
SNARK verification opcode to Ethereum’s stack machine.
We finally compile an executable program for the parties to
compute the Libsnark proofs according to our protocol.

5.2 Additional Examples

Besides our running example of a sealed-bid auction (Fig-
ure |2)), we implemented several other examples in Hawk,
demonstrating various capabilities:

Crowdfunding: A Kickstarter-style crowdfunding campaign,
(also known as an assurance contract in economics litera-
ture [9]) overcomes the “free-rider problem,” allowing a large
number of parties to contribute funds towards some social
good. If the minimum donation target is reached before
the deadline, then the donations are transferred to a des-
ignated party (the entrepreneur); otherwise, the donations
are refunded. Hawk preserves privacy in the following sense:
a) the donations pledged are kept private until the dead-
line; and b) if the contract fails, only the manager learns
the amount by which the donations were insufficient. These
privacy properties may conceivably have a positive effect on
the willingness of entrepreneurs to launch a crowdfund cam-
paign and its likelihood of success.

Rock Paper Scissors: A two-player lottery game, and nat-
urally generalized to an N-player version. Our Hawk im-
plementation provides the same notion of financial fairness
as in [7|16] and provides stronger security/privacy guaran-
tees. If any party (including the manager), cheats or aborts,
the remaining honest parties receive the maximum amount
they might have won otherwise. Furthermore, we go beyond
prior works [7|16] by concealing the players’ moves and the
pseudonym of the winner to everyone except the manager.

“Swap” Financial Instrument: An individual with a risky
investment portfolio (e.g, one who owns a large number of
Bitcoins) may hedge his risks by purchasing insurance (e.g.,
by effectively betting against the price of Bitcoin with an-
other individual). Our example implements a simple swap
instrument where the price of a stock at some future date
(as reported by a trusted authority specified in the public
contract) determines which of two parties receives a payout.
The private contract ensures the privacy of both the details
of the agreement (i.e., the price threshold) and the outcome.

The full Hawk programs for these examples are provided in
the Appendix.

5.3 Performance Evaluation

We evaluated the performance for various examples, using
an Amazon EC2 r3.8xlarge virtual machine. Our bench-
marks actually consume at most 23.7GB of memory and 4



pour freeze compute finalize

#Parties - - - 2 2 10 100 10 100
KeyGen(s) MUL  97.0 85.1 116.3| 8.7 8.1 32.3 298.6 34.7 298.5

ONE 323.6 289.3  407.7|27.6 24.7 122.8 973.8 122.4 970.0
Provets) MUL 40.1 30.6 49.9| 3.6 2.8 13.3 166.6 13.9 159.3

ONE 100.6 85.1 132.8| 7.5 7.3 39.5 369.2 39.4 375.9
Verify(ms) 9.7 9.6 9.8 81 80 9.7 16.6 9.3 13.8
EvalKey(GB) 0.60 0.54 0.7610.04 0.04 0.21 1.92 0.21 1.91
VerKey(kB) 13.0 11.3 14.4| 3.3 2.9 12.9 113.8 12.9 113.8
Proof(s) 288 288 288| 288 288 288 288 288 288

Table 1: Performance of the zk-SNARK circuits for pour,
freeze and compute (same for all applications), and for finalize
in four different applications. The units of quantity are stated
in the leftmost column of the table. MUL denotes multiple (4)
cores, and ONE denotes a single core. The mint operation does
not involve any SNARKSs, and can be computed within tens of
microseconds.

Mul gates Ratio Encryption Signature

18.2x 85% 9%
11.3x 91% -
1x - -

155M
96M
8.5M

Naive
Optl
Optl,2

Table 2: Gains attained by optimizations. Opt 1 and
Opt 2 are two practical optimizations detailed in Section

cores in the most expensive case. Table [[] illustrates the re-
sults — we focus on evaluating the zk-SNARK performance
since all other computation time is negligible in comparison.
We highlight some important observations:

e On-chain computation (dominated by zk-SNARK ver-
ification time) is very small in all cases, ranging from 8
to 16.6 milliseconds, while the cryptographic proof is
constant (288 bytes). This makes the running time of the
verification algorithm just linearly dependent on the size
of the public statement, which is far smaller than the size
of the computation, resulting into small verification time.

e On-chain public parameters: As mentioned in Sec-
tion [4.3] not the entire SNARK common reference string
(CRS) need to be on the blockchain, but only the veri-
fication key part of the CRS needs to be on-chain. Our
implementation suggests the following: the private cash
protocol requires a verification key of 39KB to be stored
on-chain — this verification key is globally shared and there
is only a single instance. Besides the globally shared pub-
lic parameters, each Hawk contract will additionally re-
quire 13-114 KB of verification key to be stored on-chain,
for 10 to 100 users. This per-contract verification key is
circuit-dependent, i.e., depends on the contract program.
We refer the readers to Section for more discussions
on techniques for performing trusted setup.

e Manager computation: Running private auction or
crowdfunding protocols with 100 participants requires un-
der 6.25min proof time for the manager on a single core,
and under 2.8min on 4 cores. This translates to under
$0.13 of EC2 time [2].

e User computation: Users’ proof times for pour, freeze
and compute are under one minute, and independent of
the number of parties.
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Savings from protocol optimizations. Tableevaluates
the performance gains attained by our protocol optimiza-
tions described in Section [£.21 This table shows the sealed-
bid auction example at 100 bidders. We show that our two
optimizations combined significantly reduce the SNARK cir-
cuit sizes, and achieve a gain of 18 relative to a straight-
forward implementation.

6. FREQUENTLY ASKED QUESTIONS

In this section, we address some of the frequently asked
questions. Some of this content repeats what is already
stated earlier in the paper, but we hope that addressing
these points again in a centralized section will help reiterate
some important points that may be missed by a reader.

6.1 Motivational

“Does privacy come at the expense of transparency?”
Our work preserves the most important aspects of trans-
parency; in particular it is efficiently and publicly verifiable
that the balance of all coins is conserved. It is also possi-
ble to engineer the cryptography to make other properties
publicly auditable too if needed. In general, it is well-known
that cryptography allows one to achieve privacy and trans-
parency simultaneously.

We stress that privacy is of utmost importance in a vari-
ety of financial transactions. For example, Section [5.2 and
Appendix Figure describe a financial swap/insurance
contract. In real life, companies do not wish to reveal their
financial dealings to the public, and the present blockchain
technology will preclude any such applications that require
privacy. Privacy may also be important in our auction or
crowdfunding examples. This is certainly not an exhaustive
list, and there are a large variety of financial instruments and
contracts (e.g., futures, options, multilateral credit settle-
ment transactions, and double-auctions) that may be mod-
eled in our framework.

“Why are the recipient pseudonyms P; and P: re-
vealed to the adversary? And what about Zero-
cash’s persistent addresses feature?” For simplicity, we
define our protocol (see Section to reveal the recipi-
ents’ pseudonyms. This only provides full privacy when the
recipient generates a fresh pseudonym for each transaction.
Zerocash takes an alternative approach, where the recipient
has a long-term master pseudonym and the sender derives
from this an ephemeral public key. It would be straight-
forward to add this feature to our system as well (at the
cost of a constant factor blowup in performance); however,
we believe in most applications (e.g., a payment made after
receiving an invoice), the transfer is subsequent to some in-
teraction between the recipient and sender. We have added
a paragraph to Section [£-3| to discuss this issue.

“How does Hawk’s programming model differ from
Ethereum?” Our high-level approach may be superior
than Ethereum: Ethereum’s language only defines the pub-
lic on-chain contract. By contrast, our idea is to allow the
programmer to write a single program in a centralized fash-
ion, and we auto-generate not only the on-chain contract,
but also the protocols for user agents. Having said this, we
remark that presently, for the public portion of the Hawk
contract, we support Ethereum’s Serpent language as is.

A gold standard for smart contract languages is non-existent,



and it remains an open research question how to design safe
and usable programming languages for smart contracts. As
Delmolino et al. [26] and Juels et al. [35] demonstrate, smart
contract programming is an error-prone process. In future
work, we would like to give a more systematic and in-depth
study on how to design programming languages for smart
contracts.

6.2 Technical

“SNARKS do not offer simulation extractability re-
quired for UC.” Our UC proofs require our NIZKs to be
simulation extractable. In general, SNARKs are not sim-
ulation extractable and cannot suffice for UC proofs. We
stress that our simulator is not using the SNARK extrac-
tor to extract, since doing so would require running the
environment’s algorithm inside the extractor! Section 4.2
discusses our generic transformation from SNARK to simu-
lation extractable NIZK (see paragraph entitled “Subtleties
related to the NIZK proofs”) and we formalize this in the
Appendix (see Theorem 2). Our experimental results in-
clude this transformation, and suggest the practicality of
this approach. This issue is also related to the technical in-
correctness of Zerocash (see paragraph entitled “Technical
subtleties” in Section and Appendix [C).

Trust in the manager. “Can’t a dishonest manager
forge proofs?” As we mention upfront in Sections and
[[2] the manager need not be trusted for correctness and
input independence. Further, each contract instance can
choose its own manager, and the manager of one contract
instance cannot affect the security of another contract in-
stance. Similarly, the manager also need not be trusted to
retain the security of the crypto-currency as a whole. There-
fore, the only thing we trust the manager for is posterior
privacy. To see that the manager need not be trusted for
correctness, notice that in our cryptographic construction,
the manager must give zero-knowledge proofs to attest to the
correctness of its computation, as well as the conservation
of money. The unforgeability of the proofs is cryptographi-
cally enforced by the soundness of the NIZK scheme, and a
dishonest manager cannot forge proofs.

As mentioned in Section we note that one can possi-
bly rely on secure multi-party computation (MPC) to avoid
having to trust the manager even for posterier privacy —
however such a solution is unlikely to be practical in the
near future, especially when a large number of parties are
involved. The thereotical formulation of this full-generality
MPC-based approach is detailed in Appendix [G]

In our implementation, we made a conscious design choice
and opted for the approach with a minimally trusted man-
ager (rather than MPC), since we believe that this is a de-
sirable sweet-spot that simultaneously attains practical effi-
ciency and strong enough security for realistic applications.
We stress that practical efficiency is an important goal of
Hawk’s design.

In Section we also discuss practical considerations for
instantiating this manager. For the reader’s convenience,
we iterate: we think that a particularly promising choice
is to rely on trusted hardware such as Intel SGX to obtain
higher assurance of posterior privacy. We stress again that
even when we use the SGX to realize the manager, the SGX
should not have to be trusted for retaining the global secu-
rity of the cryptocurrency. In particular, it is a very strong
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assumption to require all participants to globally trust a sin-
gle or a handful of SGX prcessor(s). With Hawk’s design,
the SGX is only very minimally trusted, and is only trusted
within the scope of the current contract instance.

“Is fair MPC impossible without the blockchain?” As
is well known in cryptography, fairness against aborts is in
general impossible in the plain model of secure multi-party
computation (without a blockchain), when the majority of
parties are corrupted [8/16[23|. There have been a plethora
of results on this topic, beginning with the well-known result
by Cleve [23], to more recent works that aim to establish a
complete characterization on when fairness is possible and
when not [8].
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A.

ADDITIONAL EXAMPLE PROGRAMS

Crowdfunding example. In the crowdfunding example
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1 typedef enum {ROCK, PAPER, SCISSORS} Move;
2 typedef enum {DRAW, WIN, LOSE} Outcome;
3 typedef enum {0K, A_CHEAT, B_CHEAT} Output;
4 // Private Contract parameters
5 (Alice, Bob);
6 (/* hardcoded timeouts */);
7 (Move move);
8 Outcome (Move a, Move b) {
9 return (a - b) % 3;
10 ¥
11 private contract (Inp &in, Outp &out) {
12 if (in.Alice.$val !'= $1) out.out = A_CHEAT;
13 if (in.Bob.$val !'= $1) out.out = B_CHEAT;
14 Outcome o = (in.Alice.move, in.Bob.move);
15 if (o == WIN) out.Alice.$val = $2;
16 else if (o == LOSE) out.Bob.$val = $2;
17 else out.Alice.$val = out.Bob.$val = $1
18 }
19 public contract O A1
20 // Alice and Bob each deposit $2
21 // Manager deposits $4
22 def (Output o):
23 send $4 to Manager
24 if (o == A_CHEAT): send $4 to Bob
25 if (o == B_CHEAT): send $4 to Alice
26 if (o == 0K):
27 send $2 to Alice
28 send $2 to Bob
29 def O:
30 send $4 to Bob
31 send $4 to Alice
32 )
Figure 11: Hawk program for a rock-paper-scissors

game. This program defines both a private contract and a
public contract. The private contract guarantees that only
Alice, Bob, and the Manager learn the outcome of the game.
Public collateral deposits are used to guarantee financial
fairness such that if any of the parties cheat, the remain-
ing honest parties receive monetary compensation.

in Figure[T2] parties donate money for a kickstarter project.
If the total raised funding exceeds a pre-set budget denoted
BUDGET, then the campaign is successful and the kickstarter
obtains the total donations. Otherwise, all donations are
returned to the donors after a timeout. In this case, no pub-
lic deposit is necessary to ensure the incentive compatibility
of the contract. If a party does not open after freezing its
money, the money is unrecoverable by anyone.

Swap instrument example. In this financial swap instru-
ment, Alice is betting on the stock price exceeding a certain
threshold at a future point of time, while Bob is betting on
the reverse. If the stock price is below the threshold, Alice
obtains $20; else Bob obtains $20. As mentioned earlier in
Section [5.2] such a financial swap can be used as a means
of insurance to hedge invenstment risks. This swap contract
makes use of public deposits to provide financial fairness
when either Alice or Bob cheats.

This swap assumes that the manager is a well-known pub-
lic entity such as a stock exchange. Therefore, the contract
does not protect against the manager aborting. In the event
that the manager aborts, the aborting event can be ob-
served in public, and therefore external mechanisms (e.g.,
legal enforcement or reputation) can be leveraged to punish
the manager.
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1 // Raise $10,000 from up to N donors
2 #define BUDGET $10000

(Entrepreneur, /* N Parties */);
(/* hardcoded timeouts */);

S

private contract

int sum = 0;

for (int i = 0; i < N; i++) {
sum += in.p[i].$val;

}

if (sum >= BUDGET) {
// Campaign successful
out.Entrepreneur.$val =

5 (Inp &in, Outp &out) {
6

7

8

9

10

11

12

13 } else {
14

15

16

17

18

19

sum;

// Campaign unsuccessful
0; i < N; i++) {
in.p[il.$val; // refund

for (int i =
out.p[il.8$val =
}
}
}

Figure 12: Hawk contract for a kickstarter-style
crowdfunding contract. No public portion is required.
An attacker who freezes but does not open would not be
able to recover his money.

We provide the Hawk programs for the applications used in
our evaluation in Section[5] For the sealed auction contract,
please refer to Section [1.2

Rock-Paper-Scissors example. In this lottery game in
Figure each party deposits $3 in total. In the case that
all parties are honest, then each party has a 50% chance
of leaving with $4 (i.e., winning $1) and a 50% chance of
leaving with $2 (i.e., losing $2).

The lottery game is fair in the following sense: if any party
cheats, then the remaining honest parties are guaranteed a
payout distribution that stochastically dominates the payout
distribution they would expect if every party was honest.

This is achieved using standard “collateral deposit” tech-
niques [74{16]. For example, if Alice aborts, then her deposit
is used to compensate Bob by the maximum amount $4. If
the Manager aborts, then both Alice and Bob receive $8.

Unlike the lottery games found in Bitcoin and Ethereum |7,
16L/26], our contract also provides privacy. If the Manager
and both parties do not voluntarily disclose information,
then no one else in the system learns which of Alice or
Bob won. Even when the Manager, Alice, and Bob are all
corrupted, the underlying ecash cash system still provides
privacy for other contracts and guarantees that the total
amount of money is conserved.

B. PRELIMINARIES

Notation. In the remainder of the paper, f(\) = g(\)
means that there exists a negligible function v(\) such that

IF(X) =g <wv(N).

B.1 Non-Interactive Zero-Knowlege Proofs

A non-interactive zero-knowlege proof system (NIZK) for
an NP language £ consists of the following algorithms:

e crs « K(1*, £), also written as crs < KeyGen,;,, (1%, £):
Takes in a security parameter A, a description of the
language £, and generates a common reference string
crs.



Table 3: Notations.

Ppriv user-defined private Hawk contract. Specifically, ({$val;};e[ny,0ut) =
d({$vali,ini}iciny, ina), i.e., ¢ takes in the parties’ private inputs {in;};c(ni, pri-
vate coin values {vali};c;n], the manager’s public input P, and outputs the
payout of each party {$va|§}i€[1\,], and a public output out.

Ppub user-defined public Hawk contract.

IdealP ideal program

simP simulator program

C, ContractP contract program
prot, ProtP user-side program

F() ideal functionality wrapper, F(ldealP) denotes an ideal functionality

G(-) contract functionality wrapper, G(C) denotes a contract functionality

I1() protocol wrapper, II(prot) denotes user-side protocol

P party or its pseudonym
Pm minimally trusted manager (or its pseudonym)
A adversary
E environment
T current time
ledger global public ledger
Coins (in ideal programs) private ledger, maintained by the ideal functionality
Coins (in contract programs) | a set of cryptographic coins stored by a contract. Private spending (including
pours and freezes) must demonstrate a zero-knowledge proof of the spent coin’s
membership in Coins. Further, private spending must demonstrate a cryptographic
serial number sn that prevents double spending.

e 7 < P(crs,stmt,w): Takes in crs, a statement stmt,
a witness w such that (stmt,w) € £, and produces a
proof 7.

e b < V(crs,stmt, w): Takes in a crs, a statement stmt,
and a proof m, and outputs 0 or 1, denoting accept or
reject.

Perfect completeness. A NIZK system is said to be per-
fectly complete, if an honest prover with a valid witness can
always convince an honest verifier. More formally, for any
(stmt, w) € R, we have that

crs «— K(1*, L), 7 < P(crs, stmt, w) :

Pr V(crs,stmt, m) =1

=1

Computational zero-knowlege. Informally, a NIZK sys-
tem is computationally zero-knowledge, if the proof does not
reveal any information about the witness to any polynomial-
time adversary. More formally, a NIZK system is said to
computationally zero-knowledge, if there exists a polynomial-
time simulator S = (K, P), such that for all non-uniform
polynomial-time adversary A, we have that

Pr|crs < K(17, L) : AP(ers) = 1}
~ Pr|(@s,1) < KO, L) : AP @) o 1}
In the above, 7/51(&\5, T,stmt, w) verifies that (stmt,w) € L,

and if so, outputs 73(c/\rs7 7,stmt) which simulates a proof
without knowing a witness.

Computational soundness. A NIZK scheme for the lan-

guage L is said to be computationally sound, if for all polynomial-

time adversaries A,

crs « K(1*, L), (stmt, 7) < A(crs) :

Pr (V(ers,stmt, ) = 1) A (stmt ¢ L)

~0
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Simulation sound extractability. Simulation sound ex-

tractability says that even after seeing many simulated proofs,
whenever the adversary makes a new proof, a simulator is

able to extract a witness. Simulation extractability implies

simulation soundness and non-malleability, since if the sim-

ulator can extract a valid witness from an adversary’s proof,

the statement must belong to the language. More formally,

a NIZK system is said to be simulation sound extractable, if

there exist polynomial-time algorithms (IE, P.E ), such that

for any polynomial-time adversary A, it holds that

(cFs, 7, ek) ¢ K(1*, £);
(stmt, ) « AP 7 (&r5, ek); ~0
w < E(Crs, ek, stmt, 7) : stmt ¢ @Q and

(stmt,w) ¢ £ and V(Crs, stmt, ) = 1

Pr

In the above, @ is the list of simulation queries. Here the K
is identical to the zero-knowledge simulation setup algorithm
when restricted to the first two terms.

Note that in the above definition, the adversary may be
able to fake a (different) proof for a statement that has been
queried, however, it is not able to forge a proof for any other
invalid statement. There is a natural strengthening of the
above notion where the adversary cannot even fake a differ-
ent proof for a statement queried. In our paper, however,
the weaker notion defined above would suffice.

B.2 Simulation Sound Extractable Proofs from
Ordinary NIZKs

We give a generic transformation that turns an ordinary
NIZK into one that satisfies simulation sound extractabil-
ity. In our implementation, we use Zero-Knowledge Suc-
cinct Non-interactive ARguments of Knowledge (SNARKSs)
as the underlying NIZK, and apply our transformation here
to make it a NIZK with simulation sound extractability. For



1 typedef enum {0K, A_CHEAT, B_CHEAT} Output

2 (Alice, Bob);
3 (/* hardcoded timeouts */);
4 (int stockprice,
int threshold[5]);
5 (Output o);

6 int threshold_comm[5] = {/* harcoded */};

6 private contract (Inp &in, Outp &out) {
7 if (shal(in.Alice.threshold) != threshold_comm)
out.o = A_CHEAT;
if (in.Alice.$val != $10) out.o

7 A_CHEAT;
8 if (in.Bob.$val !'= $10) out.o

8

9

B_CHEAT;

if (in.stockprice < in.Alice.threshold[0])
out.Alice.$val = $20;
10 else out.Bob.$val = $20;

11}
12 public contract {
13 def (stockprice):
14 // Alice and Bob each deposits $10
15 // Assume the stock price authority is trusted
16 // to send this contract the price
17 msg.sender == StockPriceAuthority
18 self.stockprice = stockprice
19 def check(int stockprice, Output o):
20 stockprice == self.stockprice
21 if (o == A_CHEAT): send $20 to Bob
22 if (o == B_CHEAT): send $20 to Alice
23 if (o == 0K):
24 send $10 to Alice
25 send $10 to Bob
26}
Figure 13: Hawk program for a risk-swap financial

instrument. In this case, we assume that the manager is
a well-known entity such as a stock exchange, and therefore
the contract does not protect against the manager default-
ing. An aborting manager (e.g., a stock exchange) can be
held accountable through external means such as legal en-
forcement or reputation, since aborting is observable by the
public.

this reason, in the transformation described below, we sim-
ply use snark to denote the underlying NIZK.
e K(1*,£): Run (pk,sk) « X.Gen(1?). Run (pk,,ske) «
KeyGen,, (1*).
Let £ be the following language: ((stmt,c), (r,w,0)) € L’
iff
(¢ = Enc(pk,, (w,0),7)) A
((stmt, w) € LV (X.V(pk,stmt, o) = 1))
Run snark.crs < snark KC(1*, £').
Publish crs := (snark.crs, pk, pk, ) as the common reference
string.
e P(crs,stmt,w): Parse crs := (snark.crs, pk). Choose ran-
dom r, and compute ¢ := Enc(pk,, (w,o),r).
Call 7 := snark.P(snark.crs, (stmt,c), (r,w, L)), and out-
put ' := (¢, m).

e V(crs,stmt, 7'): Parse 7’ := (¢, ), and output snark.V(snark.crs,

(stmt, ¢), 7).

THEOREM 2. Assume that the SNARK scheme satisfies
perfect completeness, computational soundness, and com-
putational zero-knowlege, and that the encryption scheme

is perfectly correct, then the above construction is a zero-
knowledge proof system satisfying perfect completeness, com-
putational zero-knowledge, and simulation sound extractabil-
ity.

ProOOF. The proofs of perfect completeness and compu-
tational zero-knowledge are obvious. We now show that this
transformation gives a simulation sound extractable NIZK.
We construct the following simulation and extractor:

e K(1*,£): Run the honest K algorithm, but retain the
signing key sk as the simulation trapdoor 7 := sk. The
extraction key ek := sk, the simulated crs := crs =
(snark.crs, pk, pk, ).

o P(crs, 7, stmt): the simulator calls
m := snark.P(snark.crs, (stmt, ¢), (L, L,0))
where c is an encryption of 0, and
o := X.Sign(sk, stmt)
Output (c, ).

o £(crs, ek, stmt, 7’): parse 7’ := (¢, w), and let (w, o) :=
Dec(ske, c). Output w.

We now show that no polynomial-time adversary A can
win the simulation sound extractable game except with neg-
ligible probability. Given that the encryption scheme is per-
fectly correct, and that snark is computationally sound, the
witness (w, o) decrypted by £ must satisfy one of the fol-
lowing two cases except with negligible probability: 1) w
is a valid witness for stmt under language £; or 2) o is a
valid signature for stmt. If stmt has not been queried by the
adversary A, then it must be that w is a valid witness for
stmt, since otherwise, the simulator can easily leverage the
adversary to break the security of the signature scheme. [

C. TECHNICAL SUBTLETIES IN ZEROCASH

In general, a simulation-based security definition is more
straightforward to write and understand than ad-hoc indis-
tinguishability games — although it is often more difficult to
prove or require a protocol with more overhead. Below we
highlight a subtle weakness with Zerocash’s security defini-
tion [10], which motivates our stronger definition.

Ledger Indistinguishability leaks unintended infor-
mation. The privacy guarantees of Zerocash [10] are de-
fined by a “Ledger Indistinguishability” game (in [10], Ap-
pendix C.1). In this game, the attacker (adaptively) gener-
ates two sequences of queries, Qiert and Qrigne. Each query
can either be a raw “insert” transaction (which corresponds
in our model to a transaction submitted by a corrupted
party) or else a “mint” or “pour” query (which corresponds
in our model to an instruction from the environment to an
honest party). The attacker receives (incrementally) a pair
of views of protocol executions, Viesy and Viigne, according
to one of the following two cases, and tries to discern which
case occurred: either Viign: is generated by applying all the
queries in Qrigne and respectively for Viigne; or else Viese is
generated by interweaving the “insert” queries of Qqest With
the “mint” and “pour” queries of Qrignt, and Viigne is gener-
ated y interweaving the “insert” queries of Qrigne with the
“mint” and “pour” queries of Qiesr. The two sequences of
queries are constrained to be “publicly consistent”, which
effectively defines the information leaked to the adversary.



For example, the i*" queries in both sequences must be of
the same type (either “mint”, “pour”, or “insert”), and if a
“pour” query includes an output to a corrupted recipient,
then the output value must be the same in both queries.

However, the definition of “public consistency” is subtly
overconstraining: it requires that if the ith query in one
sequence is an (honest) “pour” query that spends a coin pre-
viously created by a (corrupt) “insert” query, then the ith
queries in both sequences must spend coins of equal value
created by prior “insert” queries. Effectively, this means that
if a corrupted party sends a coin to an honest party, then
the adversary may be alerted when the honest party spends
it.

We stress that this does not imply any flaw with the Ze-
rocash construction itself — however, there is no obvious
path to proving their scheme secure under a simulation based
paradigm.

D. SIMULATOR WRAPPER

Before we describe our proofs, we first define a simulator
wrapper that will help modularize our proofs.

Simulator wrapper S: The ideal adversary S can typi-
cally be obtained by applying the simulator wrapper S(-)
to the user-defined portion of the simulator simP. The sim-
ulator wrapper modularizes the simulator construction by
factoring out the common part of the simulation pertaining
to all protocols in this model of execution.

The simulator is defined formally in Figure

E. FORMAL PROOF FOR PRIVATE CASH

We now prove that the protocol in Figure |8 is a secure
and correct implementation of F(ldealhawk). For any real-
world adversary A, we construct an ideal-world simulator
S, such that no polynomial-time environment £ can dis-
tinguish whether it is in the real or ideal world. We first
describe the construction of the simulator S and then argue
the indistinguishability of the real and ideal worlds.

THEOREM 3. Assuming that the hash function in the Merkle

tree is collision resistant, the commitment scheme Comm
is perfectly binding and computationally hiding, the NIZK
scheme is computationally zero-knowledge and simulation
sound extractable, the encryption schemes ENC and SENC
are perfectly correct and semantically secure, the PRF scheme
PRF is secure, then our protocol in Figure [§ securely emu-
lates the ideal functionality F(ldealcesh).

E.1 1Ideal World Simulator

Due to Canetti [19], it suffices to construct a simulator
S for the dummy adversary that simply passes messages to
and from the environment £. The ideal-world simulator S
also interacts with the F(ldealcasn) ideal functionality. Be-
low we construct the user-defined portion of our simulator
simP. Our ideal adversary & can be obtained by apply-
ing the simulator wrapper S(simP). The simulator wrapper
modularizes the simulator construction by factoring out the
common part of the simulation pertaining to all protocols in
this model of execution.

Recall that the simulator wrapper performs the ordinary
setup procedure, but retains the “trapdoor” information used
in creating the crs for the NIZK proof system, allowing it
to forge proofs for false statement and to extract witnesses
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from valid proofs. Since the real world adversary would see
the entire state of the contract, the simulator allows the
environment to see the entire state of the local instance of
the contract. The environment can also submit transactions
directly to the contract on behalf of corrupt parties. Such a
pour transaction contains a zero-knowledge proof involving
the values of coins being spent or created; the simulator
must rely on its ability to extract witnesses in order to learn
these values and trigger F(ldealcasn) appropriately.

The environment may also send mint and pour instruc-
tions to honest parties that in the ideal world would be for-
warded directly to F(ldealcasn). These activate the simula-
tor, but only reveal partial information about the instruction
—in particular, the simulator does not learn the values of the
coins being spent. The simulator handles this by writing bo-
gus (but plausible-seeming) information to the contract.

Thus the simulator must translate transactions submit-
ted by corrupt parties to the contract into ideal world in-
structions, and must translate ideal world instructions into
transactions published on the contract.

The simulator simP is defined in more detail below:

Init. The simulator simP runs (&5, 7,ek) « NIZK.K(1Y),
and gives crs to the environment &£.

Simulating corrupted parties. The following messages
are sent by the environment £ to the simulator S(simP)
which then forwards it on to both the internally simulated
contract G(ContractCash) and the inner simulator simP.

e simP receives a pseudonymous mint message (mint, $val, 7).
No extra action is necessary.

e simP  receives an  anonymous pour  message,
(pour, {sn;, P;, coing, cti}ieq1,21}). The simulator uses T
to extract the witness from 7, which includes the sender
P and values $valy, $vals, $vali and $vals. If P; is an un-
corrupted party, then the simulator must check whether
each encryption ct; is performed correctly, since the NIZK
proof does not guarante that this is the case. The simu-
lator performs a trial decryption using P;.esk; if the de-
cryption is mot a valid opening of coin;, then the sim-
ulator must avoid causing P; in the ideal world to out-
put anything (since P; in the real world would not out-
put anything either). The simulator therefore substitutes
some default value (e.g., the name of any corrupt party
‘P) for the recipient’s pseudonym. The simulator forwards

(pour, $valy, $vals, PI, PJ, $val}, $vals) anonymously to F(ldealcass ),

where 772 = P if P; is uncorrupted and decryption fails,
and PZ-T = P; otherwise.

Simulating honest parties. When the environment &
sends inputs to honest parties, the simulator S needs to sim-
ulate messages that corrupted parties receive, from honest
parties or from functionalities in the real world. The honest
parties will be simulated as below:

e GenNym(epk, spk): The simulator simP generates
and records the PRF keypair, (pkpgg,skerr) and re-
turns payload := pkpge.

e Environment £ gives a mint instruction to party P.
The simulator simP receives (mint, P, $val, r) from the
ideal functionality F(ldealcasn). The simulator has
enough information to run the honest protocol, and
posts a valid mint transaction to the contract.



S(simP)

Init. The simulator & simulates a G(contract) instance internally. Here S calls G(contract).Init to initialize the internal
states of the contract functionality. S also calls simP.Init.

Simulating honest parties.

e Tick: Environment £ sends input tick to an honest party P: simulator S receives notification (tick, P) from the ideal
functionality. Simulator forwards the tick message to the simulated G(contract) functionality.

e GenNym: Environment £ sends input gennym to an honest party P: simulator S receives notification gennym from
the ideal functionality. Simulator S honestly generates an encryption key and a signing key as defined in Figure [5] and
remembers the corresponding secret keys. Simulator S now calls simP.GenNym/(epk,spk) and waits for the returned
value payload. Finally, the simulator passes the nym P = (epk, spk, payload) to the ideal functionality.

e Other activations. // From the inner idealP

If ideal functionality sends (transfer, $amount, P, Ps), then update the ledger in the simulated G(Contract) instance
accordingly.

Else, forward the message to the inner simP.

Simulating corrupted parties.

e Permute: Upon receiving (permute, perm) from the environment &, forward it to the internally simulated G(contract)
and the ideal functionality.

e Expose. Upon receiving exposestate from the environment £, expose all states of the internally simulated G(contract).
e Other activations.

— Upon receiving (authenticated, m) from the environment £ on behalf of corrupted party P: Forward to internally
simulated G(contract). If the message is of the format (transfer, $amount, P., P,), then forward it to the ideal
functionality. Otherwise, forward to simP.

— Upon receiving (pseudonymous, m, P, o) from the environment £ on behalf of corrupted party P: Forward to internally
simulated G(contract). Now, assert that o verifies just like in G(contract). If the message is of the format (transfer,
$amount, P,, Ps), then forward it to the ideal functionality. Else, forward to simP.

— Upon receiving (anonymous, m) from the environment £ on behalf of corrupted party P: Forward to internally simulated
G(contract). If the message is of the format (transfer, $amount, P, Ps), then forward it to the ideal functionality. Else,
forward to simP.

Figure 14: Simulator wrapper.

e Environment £ gives a pour instruction to party P. under P;’s registered encryption public key.
The simulator simP receives (pour, P1, P2) from Fcasu-.
However, the simulator does not learn the name of the E.2 Indistinguishability of Real and Ideal Worlds
honest sender P, or the correct values for each input
coin val; (for ¢ € {1,2}). Instead, the simulator uses 7
to create a false proof using arbitrary values for these
values in the witness. To generate each serial number

To prove indistinguishability of the real and ideal worlds
from the perspective of the environment, we will go through
a sequence of hybrid games.

sn; in the witness, the simulator chooses a random el- Real world. We start with the real world with a dummy
ement from the codomain of PRF. For each recipient adversary that simply passes messages to and from the en-
P; (for ¢ € {1,2}), the simulator behaves differently vironment &.

depending on whether or not P; is corrupted: . . .
P & P Hybrid 1. Hybrid 1 is the same as the real world, except

Case 1: P; is honest. The simulator does not know the cor- that now the adversary (also referred to as the simulator)
rect output value, so instead sets val; := 0, and will call (cFs,7,ek) « NIZK.K(1*) to perform a simulated
computes coin; and ct; as normal. The environment setup for the NIZK scheme. The simulator will pass the
therefore sees a commitment and an encryption of simulated crs to the environment £. When an honest party
0, but without P;.esk it cannot distinguish between ‘P publishes a NIZK proof, the simulator will replace the real
an encryption of 0 or of the correct value. proof with a simulated NIZK proof before passing it onto the

Case 2: P; is corrupted. Since the ideal world recipient environment £. The simulated NIZK proof can be computed
would receive $val; from Feasu, and since P; is cor- by calling the NIZK.P(crs, 7,-) algorithm which takes only
rupted, the simulator learns the correct value $val; the statement as input but does not require knowledge of a
directly. Hence coin; is a correct encryption of $val; witness.
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FAct 1. It is immediately clear that if the NIZK scheme
is computational zero-knowledge, then mo polynomial-time
environment £ can distinguish Hybrid 1 from the real world
except with negligible probability.

Hybrid 2. The simulator simulates the G(ContractCash)
functionality. Since all messages to the G(ContractCash)
functionality are public, simulating the contract function-
ality is trivial. Therefore, Hybrid 2 is identically distributed
as Hybrid 1 from the environment £’s view.

Hybrid 3. Hybrid 3 is the same as Hybrid 2 except the
following changes. When an honest party sends a message to
the contract (now simulated by the simulator S), it will sign
the message with a signature verifiable under an honestly
generated nym. In Hybrid 3, the simulator will replace all
honest parties’ nyms and generate these nyms itself. In this
way, the simulator will simulate honest parties’ signatures
by signing them itself. Hybrid 3 is identically distributed as
Hybrid 2 from the environment £’s view.

Hybrid 4. Hybrid 4 is the same as Hybrid 3 except for the
following changes:

e When an honest party P produces a ciphertext ct; for
a recipient P;, and if the recipient is also uncorrupted,
then the simulator will replace this ciphertext with an
encryption of 0 before passing it onto the environment

£.

e When an honest party P produces a commitment coin,
then the simulator replaces this commitment with a
commitment to 0.

e When an honest party P computes a pseudorandom se-
rial number sn, the simulator replaces this with a ran-
domly chosen value from the codomain of PRF.

FAactT 2. It is immediately clear that if the encryption scheme

is semantically secure, if PRF is a pseudorandom function,
and if Comm is a perfectly hiding commitment scheme, then
no polynomial-time environment € can distinguish Hybrid 4
from Hybrid 8 except with negligible probability.

Hybrid 5. Hybrid 5 is the same as Hybrid 4 except for
the following changes. Whenever the environment £ passes
to the simulator S a message signed on behalf of an hon-
est party’s nym, if the message and signature pair was not
among the ones previously passed to the environment &,
then the simulator S aborts.

FAcT 3. Assume that the signature scheme employed is
secure; then the probability of aborting in Hybrid 5 is negli-
gible. Notice that from the environment £’s view, Hybrid 5
would otherwise be identically distributed as Hybrid 4 modulo
aborting.

Hybrid 6. Hybrid 6 is the same as Hybrid 5 except for
the following changes. Whenever the environment passes
(pour, m, {sn;, P;, coing, ct; }) to the simulator (on behalf of
corrupted party P), if the proof = verifies under statement,
then the simulator will call the NIZK’s extractor algorithm
£ to extract witness. If the NIZK 7 verifies but the extracted
witness does not satisfy the relation Lpour (statement, witness),
then abort the simulation.
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FacTt 4. Assume that the NIZK is simulation sound ex-
tractable, then the probability of aborting in Hybrid 6 is neg-
ligible. Notice that from the environment &’s view, Hybrid 6
would otherwise be identically distributed as Hybrid 5 modulo
aborting.

Finally, observe that Hybrid 6 is computationally indis-
tinguishable from the ideal simulation S unless one of the
following bad events happens:

e A value val’ decrypted by an honest recipient is different
from that extracted by the simulator. However, given
that the encryption scheme is perfectly correct, this can-
not happen.

e A commitment coin is different than any stored in
ContractCash.coins, yet it is valid according to the re-
lation Lpour. Given that the merkle tree MT is computed
using collision-resistant a hash function, this occurs with
at most negligible probability.

e The honest public key generation algorithm results in
key collisions. Obviously, this happens with negligible
probability if the encryption and signature schemes are
secure.

FAcT 5. Given that the encryption scheme is semanti-
cally secure and perfectly correct, and that the signature scheme
is secure, then Hybrid 6 is computationally indistinguishable
from the ideal simulation to any polynomial-time environ-
ment &.

F. FORMAL PROOF FOR HAWK

‘We now prove our main result, Theorem (see Section.
Just as we did for private cash in Theorem [3] we will con-
struct an ideal-world simulator S for every real-world ad-
versary A, such that no polynomial-time environment £ can
distinguish whether it is in the real or ideal world.

F.1 Ideal World Simulator

Our ideal program (ldealhawk) and construction (ContractHawk
and ITgak ) borrows from our private cash definition and con-
struction in a non-blackbox way (i.e., by duplicating the rel-
evant behaviors). As such, our simulator program simP also
duplicates the behavior of the simulator from Appendix
involving mint and pour interactions. Hence we will here ex-
plain the behavior involving the additional freeze, compute,
and finalize interactions.

Init. Same as in Appendix [E]

Simulating corrupted parties. The following messages
are sent by the environment £ to the simulator S(simP)
which then forwards it on to both the internally simulated
contract G(ContractHawk) and the inner simulator simP.

e Corrupt party P submits a transaction (freeze, m,sn,cm)
to the contract. The simulator forwards this transaction
to the contract, but also uses the trapdoor 7 to extract a
witness from 7, including $val and in. The simulator then
sends (freeze, $val,in) to Fuawx.

e Corrupt party P sumbits a transaction (compute, , ct) to
the contract. The simulator forwards this to the contract
and sends compute to Fuawx. The simulator also uses 7
to extract a witness from m, including k;, which is used
later. These is stored as CorruptOpen, := k;.



e Corrupt party Paq submits a  transaction
(finalize, ,ina, out, {coinj, ct; }). The simulator forwards
this to the contract, and simply sends (finalize,inaq) to

fHAWK .

Simulating honest parties. When the environment &
sends inputs to honest parties, the simulator S needs to sim-
ulate messages that corrupted parties receive, from honest
parties or from functionalities in the real world. The honest
parties will be simulated as below:

e Environment £ gives a freeze instruction to party P.

The simulator simP receives (freeze, P) from F(ldealyawk)-

The simulator does not have any information about
the actual committed values for $val or in. Instead,
the simulator create a bogus commitment
cm := Comm,(0]|L||L) that will later be opened (via
a false proof) to an arbitrary value. To generate the
serial number sn, the simulator chooses a random el-
ement from the codomain of PRF. Finally, the sim-
ulator uses T to generate a forged proof m and sends
(freeze, m,sn,cm) to the contract.

e Environment £ gives a compute instruction to party
P. The simulator simP receives (compute,P) from
F(ldealhawk). The simulator behaves differently de-
pending on whether or not the manager Pa is cor-
rupted.

Case 1: Paq is honest. The simulator does not know
values $wval or in. Instead, the simulator sam-
ples an encryption randomness r and generates
an encryption of 0, ct := ENC(Paq.epk,r,0).
Finally, the simulator uses the trapdoor 7 to
create a false proof 7 that the commitment cm
and ciphertext ct are consistent. The simulator
then passes (compute, 7, ct) to the contract.

Case 2: Py is corrupted. Since the manager Paq in
the ideal world would learn $val, in, and k at
this point, the simulator learns these values in-
stead. Hence it samples an encryption random-

ness r and computes a valid encryption ct :=

ENC(Pas.epk,r, ($valllin||k)). The simulator next

uses T to create a proof m attesting that ct is
consistent with cm. Finally, the simulator sends
(compute, 7, ct) to the contract.

e Environment £ gives a finalize instruction to party
Pas. The simulator simP receives (finalize, inag, out)
from F(ldealhawk). The simulator generates the out-
put coin} for each party P; depending on whether P;
is corrupted or not:

— P; is honest: The simulator does not know the cor-
rect output value for P;, so instead creates a bogus
commitment coinj := Comm,, (0) and a bogus ci-
phertext ct; := SENCy, (s]|0) for sampled random-
nesses k; and s;.

— P; is corrupted: Since the ideal world recipient would
receive $val; from F(ldeal,awk), the simulator learns
the correct value $val; directly. Notice that since
P; was corrupted, the simulator has access to k; :=
CorruptOpen,, which it extracted earlier. The sim-
ulator therefore draws a randomness s;, and com-
putes  coin} Comm,, ($val;)  and
ct; := SENCy, (s;||$val;).
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The simulator finally constructs a forged proof 7 using
the trapdoor T, and then passes
(finalize,,inaq, out, {coin}, cti}seqn)) to the contract.

F.2 Indistinguishability of Real and Ideal Worlds

To prove indistinguishability of the real and ideal worlds
from the perspective of the environment, we will go through
a sequence of hybrid games.

Real world. We start with the real world with a dummy
adversary that simply passes messages to and from the en-
vironment &.

Hybrid 1. Hybrid 1 is the same as the real world, except
that now the adversary (also referred to as the simulator)
will call (Crs,T,ek) < NIZK.IE(l)‘) to perform a simulated
setup for the NIZK scheme. The simulator will pass the
simulated crs to the environment £. When an honest party
‘P publishes a NIZK proof, the simulator will replace the real
proof with a simulated NIZK proof before passing it onto the
environment £. The simulated NIZK proof can be computed
by calling the NIZKﬁ(Er\s, 7,-) algorithm which takes only
the statement as input but does not require knowledge of a
witness.

FAcT 6. It is immediately clear that if the NIZK scheme
is computational zero-knowledge, then mo polynomial-time
environment £ can distinguish Hybrid 1 from the real world
except with negligible probability.

Hybrid 2. The simulator simulates the G(ContractHawk)
functionality. Since all messages to the G(ContractHawk)
functionality are public, simulating the contract functional-
ity is trivial. Therefore, Hybrid 2 is identically distributed
as Hybrid 1 from the environment £’s view.

Hybrid 3. Hybrid 3 is the same as Hybrid 2 except the
following changes. When an honest party sends a message to
the contract (now simulated by the simulator S), it will sign
the message with a signature verifiable under an honestly
generated nym. In Hybrid 3, the simulator will replace all
honest parties’ nyms and generate these nyms itself. In this
way, the simulator will simulate honest parties’ signatures
by signing them itself. Hybrid 3 is identitally distributed as
Hybrid 2 from the environment £’s view.

Hybrid 4. Hybrid 4 is the same as Hybrid 3 except for the
following changes:

e When an honest party P produces a ciphertext ct; for
a recipient P;, and if the recipient is also uncorrupted,
then the simulator will replace this ciphertext with an
encryption of 0 before passing it onto the environment

E.

e When an honest party P produces a commitment coin
or cm, then the simulator replaces this commitment
with a commitment to 0.

e When an honest party P computes a pseudorandom se-
rial number sn, the simulator replaces this with a ran-
domly chosen value from the codomain of PRF.

Fact 7. It is immediately clear that if the encryption scheme
is semantically secure, if PRF is a pseudorandom function,
and if Comm is a perfectly hiding commitment scheme, then
no polynomial-time environment £ can distinguish Hybrid 4
from Hybrid 8 except with negligible probability.



Hybrid 5. Hybrid 5 is the same as Hybrid 4 except for
the following changes. Whenever the environment £ passes
to the simulator S a message signed on behalf of an hon-
est party’s nym, if the message and signature pair was not
among the ones previously passed to the environment &,
then the simulator S aborts.

FacT 8. Assume that the signature scheme employed is
secure; then the probability of aborting in Hybrid 5 is negli-
gible. Notice that from the environment £’s view, Hybrid 5
would otherwise be identically distributed as Hybrid 4 modulo
aborting.

Hybrid 6. Hybrid 6 is the same as Hybrid 5 except for
the following changes. Whenever the environment passes
(pour, m, {sn;, P;, coin;, ct;}) (or (freeze,m,sn,cm)) to the
simulator (on behalf of corrupted party P), if the proof 7
verifies under statement, then the simulator will call the
NIZK’s extractor algorithm &£ to extract witness. If the
NIZK 7 verifies but the extracted witness does not satisfy the

relation Lpour (statement, witness) (or Lrreeze (statement, witness)),

then abort the simulation.

FacT 9. Assume that the NIZK is simulation sound ex-
tractable, then the probability of aborting in Hybrid 6 is neg-
ligible. Notice that from the environment & ’s view, Hybrid 6
would otherwise be identically distributed as Hybrid 5 modulo
aborting.

Finally, observe that Hybrid 6 is computationally indis-
tinguishable from the ideal simulation S unless one of the
following bad events happens:

e A value val’ decrypted by an honest recipient is different
from that extracted by the simulator. However, given
that the encryption scheme is perfectly correct, this can-
not happen.

e A commitment coin is different than any stored in
ContractHawk.coins, yet it is valid according to the re-
lation Lpgur. Given that the merkle tree MT is computed
using collision-resistant a hash function, this occurs with
at most negligible probability.

e The honest public key generation algorithm results in
key collisions. Obviously, this happens with negligible
probability if the encryption and signature schemes are
secure.

Fact 10. Given that the encryption scheme is seman-
tically secure and perfectly correct, and that the signature
scheme is secure, then Hybrid 6 is computationally indistin-
guishable from the ideal simulation to any polynomial-time
environment .

G. ADDITIONAL THEORETICAL RESULTS

In this section, we describe additional theoretical results
for a more general model that “shares” the role of the (min-
imally trusted) manager among n designated parties. In
contrast to our main construction, where posterior privacy
relies on a specific party (the manager) following the proto-
col, in this section posterior privacy is guaranteed even if a
majority of the designated parties follow the protocol. Just
as in our main construction, even if all the manager par-
ties are corrupted, the correctness of the outputs as well as
the security and privacy of the underlying crytpocurrency
remains in-tact.
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Idealsse ({Pi }icin), $amt, f,T1)
Deposit: Upon receiving (deposit,z;) from P;:
send (deposit, P;) to the adversary A
assert T' < T4 and ledger[P;] > $amt
assert P; has not called deposit earlier
ledger[P;] := ledger[P;] — $amt
record that P; has called deposit
Compute: Upon receiving (compute) from P;:
send (compute, P;) to the adversary A
assert T < Tp
assert that all parties have called deposit
let (y1,...,yn) = f(Z1,...,2n).
if all honest parties have called compute, notify

the adversary A of {y;};ck where K is the set of
corrupt parties

record that P; has called compute

if all parties have called compute:

send each y; to P;

for each party P; that deposited: let

ledger[P;] := ledger[P;] + $amt.
Timer: Assert T > T}
If not all parties have deposited: for each P; that
deposited: let ledger[P;] := ledger[P;] + $amt.

Else, let $r := (k - $amt)/(n — k) where k is the
number of parties who did not call compute. For
each party P; that called compute: let ledger[P;] :=

ledger[P;] + $amt + $r.

Figure 15: Ideal program for fair secure function

evaluation.

G.1 Financially Fair MPC with Public Deposits

We describe a variant of the financially fair MPC result by
Kumaresan et al. [38], reformulated under our formal model.
We stress that while Bentov et al. [16] and Kumaresan et
al. [38] also introduce formal models for cryptocurrency-
based secure computation, their models are somewhat re-
strictive and insufficient for reasoning about general pro-
tocols in the blockchain model of secure computation —
especially protocols involving pseudonymity, anonymity, or
financial privacy, including the protocols described in this
paper, Zerocash-like protocols [10], and other protocols of
interest [35]. Further, their models are not UC compatible
since they adopt special opague entities such as coins.

Therefore, to facilitate designing and reasoning about the
security of general protocols in the blockchain model of se-
cure computation, we propose a new and comprehensive
model for blockchain-based secure computation in this pa-
per.

G.1.1 Definitions

Our ideal program for fair secure function evaluation is
given in Figure We make the following remarks about
this ideal program. First, in a deposit phase, parties are
required to commit their inputs to the ideal functionality
and make deposits of the amount $amt. Next, parties send
a compute command to the ideal functionality. When all



ContractSFE({P:}ic[n], $amt)
Deposit: Upon receiving (deposit, {com;};c(n]) from P;:

assert T' < T4 and ledger[P;] > $amt

assert P; has not called deposit earlier

ledger[P;] := ledger[P;] — $amt

record that P; has called deposit
Compute: Upon receiving (compute, s;,7;) from P;:

assert T' < Ty

assert that all P;s have deposited, and that they
have all deposited the same set {com;};c(n]-

assert that (s;,r;) is a valid opening of com;
record that P; has called compute
if all parties have called compute:
ledger[P;] := ledger[P;] + $amt for each j € [n]
reconstruct p, send p; to P; for each j € [n]
Timer: Assert T'> T}

If not all parties have deposited or parties deposited
different {com;};c(n) sets:

For each P; that deposited:
ledger[P;] + $amt.
Else, let $r := (k - $amt)/(n — k) where k is the
number of parties whose did not send a valid open-

ing. For each party P; that sent a valid opening:
let ledger[P;] := ledger[P;] + $amt + $r.

let ledger[P;] :=

Figure 16: Contract program for fair secure func-
tion evaluation.

honest parties have issued a compute command, then the
adversary learns the outputs of the corrupt parties. If all
parties (including honest and corrupt) have issued an com-
pute command, then all parties learn their respective out-
puts, and the deposits are returned. Finally, if a timeout
happens defined by 71, the ideal functionality checks to see
if all parties have deposited. If not, this means that the
computation has not even started. Therefore, simply return
the deposits to those who have deposited, and no one needs
to be punished. However, if some corrupt parties called de-
posit but did not call compute, then these parties’ deposits
are redistributed to honest parties.

G.1.2 Construction

We now describe how to construct a protocol that realizes
the functionality F(ldealss.) in the most general case.

Our contract construction and user-side protocols are de-
scribed in Figures [I6] and [I7] respectively. The protocol is
a variant of Bentov et al. [16] and Kumaresan et al. [3§],
but reformulated under our formal framework. The intu-
ition is that all parties first run an off-chain MPC protocol
— at the end of this off-chain protocol, party P; obtains y;
which is a secret share f its output y;. The other share
needed to recover output y; is p;, i.e., y; := yi @ p;. Denote
p = (p1,...pn). All parties also obtain random shares of
the vector p at the end of the off-chain MPC protocol. Then,
in an on-chain fair exchange, all parties reconstruct p. Here,
each party deposits some money, and can only redeem its
deposit if it releases its share of p. If a party aborts without
releasing its share of p, its deposit will be redistributed to
other honest parties.
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ProtSFE({P:}scin), $amt, f)
Init: Let f(a}l, ..., Tn) be the following function param-
eterized by f:

pick a random p := (p1, . .., pn) € {0,1}1¥], where

each p; is of bit length |y;|

additively secret share p into n shares sq, ...
where each share s; € {0,1}!¥!

> Sny

for each i € [n], pick 7; € {0,1}*, and compute
com; := commit(s;, ;)

the i-th party’s output of fis defined as:

Yi =Y Dpi
out; := [ comy,...,comy,
SiyTi

where y; denotes the i-th coordinate of the output

flx1, ... zn).
Let Hf denote an MPC protocol for evaluating the
function f.
Deposit: Upon receiving the first input of the form (deposit,
),
assert T' < Tp
run the protocol Hf off-chain with input z;
when receiving the output out; from protocol Hf’
send (deposit, {comi}ie[n]) to G(ContractSFE)
Compute: Upon receiving the first (compute) input,

assert that all parties have deposited, and that
they have deposited the same set {com;} cn))
to G(ContractSFE)

if T < T1 and P; has not sent any com-—
pute instruction, then send (compute, s;,7;) to

G(ContractSFE).
On receiving p; from G(ContractSFE), output
Ui © pi
Figure 17: User program for fair secure function
evaluation.

THEOREM 4. Assume that the underlying MPC protocol
I1- is UC-secure against an arbitrary number of corruptions,
that the secret sharing scheme is perfectly secret against any
n — 1 collusions, and that the commitment scheme commit
is perfectly binding, computationally hiding, and equivocal,
Then, the protocols described in Figures [16 and [I7] securely
emulate F(ldealg) in the presence of an arbitrary number
of corruptions.

PRrROOF. Suppose that I1 7 securely emulates the ideal func-

~

tionality Fsre(f). For the proof, we replace the II7 in Fig-

ure (17| with Fgre(f), and prove the security of the protocol
in the (]—"spg(f), G(ContractSFE))-hybrid world. We describe
the user-defined portion of the simulator program simP. The
simulator wrapper was described earlier in Figure Dur-
ing the simulation, simP will receive a deposit instruction
from the environment on behalf of corrupt parties. The ideal
functionality will also notify the simulator that an honest
party has deposited (without disclosing honest parties’ in-
puts). If the simulator has collected deposit instructions on
behalf of all parties (from both the ideal functionality and
environment), at this point the simulator



e Simulates n — 1 shares. Among these |K| shares will be
assigned to corrupt parties.

e Simulates all commitments {com;};c(n). n — 1 of these
commitments will be computed honestly from the simu-
lated tokens. The last commitment will be simulated by
committing to 0.

Now the simulator collects compute instructions from the
ideal functionality on behalf of honest parties, and from the
environment on behalf of corrupt parties. When the sim-
ulator receives a notification (compute, Si, ri) from the en-
vironment on behalf of a corrupt party P;, if s; and r; are
not consistent with what was previously generated by the
simulator, ignore the message. Otherwise, send compute to
the ideal functionality on behalf of corrupt party P;. When
the simulator receives a notification (compute, P;) from the
ideal functionality for some honest P;, unless this is the last
honest P;, the simulator returns one of the previously gen-
erated and unused (s;,7;)’s. If this is the last honest P;,
then the simulator will also get the corrupt parties’ outputs
{¥: }iex from the ideal functionality. At this point, the simu-
lator simulates the last honest party’s opening to be consis-
tent with the corrupt parties’ outptus — this can be done if
the secret sharing scheme is perfectly simulatable (i.e., zero-
knowledge) against n — 1 collusions and the commitment
scheme is equivocable.

It is not hard to see that the environment cannot distin-
guish between the real world and the ideal world simula-
tion. [

Optimizations and on-chain costs. Since F(ldealss)
is simultaneously a generalization of Zerocash [11| and of
earlier cryptocurrency-based MPC protocols [16}/36L/38], our
construction satisfies the strongest definition so far. How-
ever, our construction above requires compiling a generic
NIZK prover algorithm with a generic MPC compiler, it
is likely slow. Our main construction, ProtHawk (see Sec-
tion , can be seen as an optimization when n =1 (i.e.,
the MPC is executed by only a single party). Similarly, the
earlier off-chain MPC protocols [16}36L/38] can be used in
place of ours if the user-specified program does not involve
any private money.

Even our general construction can be optimized in sevearl
ways. One obvious optimization is that not all parties need
to send the commitment set {com;},c(n) to the contract.
After the first party sends the commitment set, all other
parties can simply send a bit to indicate that they agree
with the set.

If we adopt this optimization, the on-chain communication
and computation cost would be O(|y| + A) per party. In the
special case when all parties share the same output, i.e.,
Y1 = Y2 = ... = Yn, it is not hard to see that the on-chain
cost can be reduced to O(Jy;| + A).

If we were to rely on a (programmable) random oracle
model, [29] we could further reduce the on-chain cost to
O(\) per party (i.e., independent of the total output size).
In a nutshell, we could modify the protocol to adopt a p of
length A\. We then apply a random oracle to expand p to |y|
bits. Our simulation proof would still go through as long as
the simulator can choose the outputs of the random oracle.

G.2 Fair MPC with Private Deposits

The construction above leaks nothing to the public except
the size of the public collateral deposit. For some applica-
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Idealsfe-priv({Pi}iE[N] 5 T 5 f)
Init: Call Ideal.,sp . Init. Additionally:

ContractCoins: a set of coins and private in-
puts received by this contract, each of the form
(P, in, $val) Initialize ContractCoins := ()

On receiving the first $amt from some P;, notify all
parties of $amt

Deposit: Upon receiving (deposit,$val;,z;) from P; for

some i € [n]:
assert $val; > $amt and T < T}
assert at least one copy of (P;, $val;) € Coins
assert P; has not called deposit earlier
send (deposit,P;) to A
add (P;, $val;,in;) to ContractCoins
remove one (P;, $val;) from Coins
record that P; has called deposit
Compute: Upon receiving compute from P; for some ¢ € [N]:
send (compute, P;) to A
assert current time T < T}
assert that all parties called deposit
Let (y1,..-,yn) == f(x1,...,Zn).

If all honest parties have called compute, notify
the adversary A of {y; };ex where K is the set of
corrupt parties.

record that P; has called compute
If all parties have called compute:
Send each y; to P;.
For each party P; that deposited: add one
(P;, $val;) to Coins
Refund: Upon receiving (refund) from P;:

notify (refund, P;) to A

assert T' > Tq
assert P; has not called refund earlier
assert P; has called compute

If not all parties have called deposit, add
one (P;, $val;) to Coins

Else $r := (k - $val)/(n — k) where k is the
number of parties who did not call compute,
and add one (P;, $val; + $r) to Coins

Idealcasn: include Ideal,gn (Figure@.

Figure 18: Definition of |dealsfe-priv With private de-
posit. Notations: ContractCoins denotes frozen coins owned
by the contract; Coins denotes the global private coin pool
defined by Idealcash.



tions, even revealing this information may leak unintended
details about the application. As an example, an appropri-
ate deposit for a private auction might corresopnd to the
seller’s estimate of the item’s value. Therefore, we now de-
scribe the same task as in Appendix [G] but with private
deposits instead.

7.2.1 Ideal Functionality

Figure defines the ideal program for fair MPC with
private deposits, ldealste-priv. Here, the deposit amount is
known to all parties {P;};c[n participating in the protocol,
but it is not revealed to other users of the blockchain. In par-
ticular, if all parties behave honestly in the protocol, then
the adversary will not learn the deposit amount. There-
fore, in the Init part of this ideal functionality, some party
P; sends the deposit amount $amt to the functionality, and
the functionality notifies all parties of $amt. Otherwise, the
functionality in Figure[18|is very similar to Figure[15] except
that when all of {P;};c[n] are honest, the adversary does not
learn the deposit amount.

7.2.2  Protocol

Figures and depict the user-side program and the
contract program for fair MPC with private deposits.

At the beginning of the protocol, all parties {P; };c[,] agree
on a deposit amount $amt, and cmg and publish a com-
mitment to $amt on the blockchain. As in the case with
public deposits, all parties first run an off-chain protocol
after which each party P; obtains ¥;. ¥; is random by it-
self, and must be combined with another share p; to recover
yi (i.e., the output is recovered as y; := ¥; @ p;). Denote
p = (p1,...,pn). All parties also obtain random shares
of the vector p at the end of the off-chain MPC protocol.
The vector p can be reconstructed when parties reveal their
shares on the blockchain, such that each party P; can obtain
its outcome y;. To ensure fairness, parties make private de-
posits of $amt to the blockchain, and can only obtain their
private deposit back if they reveal their share of p to the
block chain. The private deposit and private refund pro-
tocols make use of commitment schemes and NIZKs in a
similar fashion as Zerocash and Hawk.

THEOREM 5. Assuming that the hash function in the Merkle
tree is collision resistant, the commitment scheme Comm
is perfectly binding and computationally hiding, the NIZK
scheme is computationally zero-knowledge and simulation
sound extractable, the encryption scheme ENC is perfectly
correct and semantically secure, the PRF scheme PRF is
secure, then, our protocols in Figures and securely
emulates the ideal functionality F(ldealsfepriv) in Figure .

ProOF. The proof can be done in a similar manner as
that of Theorem 1] (see Appendix . [l
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ProtSFE-Priv({P:}ic(n), f)

Init: Same as Figure Additionally, let P denote the
present pseudonym, let crs denote an appropriate
common reference string for the NIZK

If current (pseudonymous) party is Pi:
send ($amt, ro) to all {P;}ic(n
let cmg := Commy, ($amt), and send (init, cmg)
to G(ContractSFE-Priv)

Else, on receiving ($amt, rg), store ($amt, rp)

On receiving (init, cmo) from
G(ContractSFE-Priv): verify that cmg =
Commy, ($amt)

Deposit: Upon receiving the first input of the form (deposit,
$val, z;): Same as Figure Additionally,

assert initialization was successful

assert current time T < T;

assert this is the first deposit input

let MT be a merkle tree over Contract.Coins

assert that some entry (s,$val,coin) € Wallet
where $val = $amt

remove one such (s, $val, coin) from Wallet
sn := PRFy. (P||coin)

let branch be the branch of (P, coin) in MT
statement := (MT.root, sn,cmg)

witness := (P, coin, skprt, branch, s, $val, rg)
7 := NIZK.Prove(Lpepos1T, Statement, witness)
send (deposit,m,sn) to G(ContractSFE-Priv)

Compute: Same as Figure[I7]

Refund: On input (refund) from the environment,

if not all parties called deposit, k := 0
else k := (number of parties that aborted)
let $val’ := $amt + (k - $amt)/(n — k)

pick randomness s

let coin := Commg($val’)

statement := (coin, cmo, k, n)

witness := (s, 70, $val, $val’)

7 := NIZK.Prove(Lrerunp, Statement, witness)

send (refund, , coin) to G(ContractSFE-Priv).

Figure 19: User program for fair SFE with private
deposit.



ContractSFE-Priv({Pi}ic[n))

Init: Let crs denote an appropriate common reference
string for the NIZK.

On first receiving (init,cmg) from P; for some ¢ €
[n], send cmg to all {P;}ic[n)-

Deposit: On receive (deposit, {com;};c[n],7,sn) from P;:

assert initialization was successful
assert T'< T
assert sn ¢ SpentCoins
statement := (MT.root, sn,cmg)
assert NIZK.Verify(Lpepostt, 7, statement)
assert P; has not called deposit earlier
record that P; has called deposit

Compute: Upon receiving (compute, s;,7;) from P;:
assert T' < Ty

assert that all P;s have deposited, and that they
have all deposited the same set {com;};c(n)-

assert that (s;,r;) is a valid opening of com;.
record that P; has called compute

Refund: Upon receiving (refund, m,coin) from P;:
assert T' > T
assert P; did not call refund earlier
assert P; called compute
if not all parties have deposited or parties de-
posited different {com;};c(n) sets, k:=0
else k := (number of aborting parties)
statement := (coin, cmo, k, n)
assert NIZK.Verify(Lrerunp, 7, statement)
add (P;, coin) to Coins

Relation (statement, witness) € LpgpostT is defined as:
parse statement := (MT.root, sn, cmg)
parse witness := (P, coin, skprt, branch, s, $val, rg)
coin := Commg($val)
cmg := Commy ($val)
assert MerkleBranch(MT .root, branch, (P||coin))
assert ’P.pkprf = skprz(0)

assert sn = PRFg__, (P||coin)

pre (
Relation (statement, witness) € Lrerunp is defined as:
parse statement := (coin, cmo, k, n)
parse witness := (s, rg, $val, $val’)
assert cmg := Commy ($val)
assert $val’ := $val + (k- $val)/(n — k)

assert coin := Comms($val’)

Figure 20: Contract program for fair SFE with
private deposit.
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